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Apologia — Why this topic?
Goals: Tell a story, about

e how one interdisciplinary collaboration worked, or not

e how mathematics aided biophysics in one project, cited/blamed 280+ times:

Biophysical Journal Volume 86 June 2004 3473-3495

Analysis of Binding Reactions by Fluorescence Recovery
after Photobleaching

Brian L. Sprague,* Robert L. Pego,’ Diana A. Stavreva,* and James G. McNally*

*Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland; and Department of Mathematics, University of Maryland, College Park, Maryland

e how mathematics may help model diffusive transport in crowded
heterogeneous cellular environments (in the future)

The story starts with an email, out of the blue...

and



Basic Q: How do DNA transcription factors find binding sites?

Experimental techniques/ingredients:

e GR = glucocorticoid receptor (DNA transcription factor)
e GFP = Green Fluourescent Protein

e confocal microscopy



Schematic of a FRAP experiment
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Figure . Schematic illustrating the FRAP technique.



FRAP experiment geometry
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FRAP Normalized Intensity

The problem: experimental data fail to fit

GFP-GR vs. Predicted Pure Diffusion

GFP well fit by Pure Diffusion model
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FRAP Normalized Intensity
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Failure to fit, part 2

GFP-GR spot size dependence indicates

a role for diffusion in the recovery GFP-GR poorly fit by Reaction Dominant model
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Basic reaction-diffusion model

Free GFP-GR (F) reacts with free binding sites (S) to form a bound complex (C)

Koff
F+S = C
Concentrations: f=[F], s = |5], c=|[C]

Ouf = DiV2f — kon f5 + kofi C
015 = DV?s — kop f5 + kog €
Oic = DNV?c+ kop 8 — kog €



Simplifying assumptions

Pre-bleach, the system is at equilibrium: s =S¢y, k5, = konSeq

Post-bleach, f, ¢ correspond only to fluorescing GFP-GR molecules/complexes
e Assume sites and complexes do not diffuse: Dy =10, D. =0

e Assume bleach profile is a perfect cylinder

e Neglect cell boundaries and presence of nucleoli

e Assume bleaching is instantaneous

These assumptions reduce the problem to 2D radial geometry.
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Pre-bleach, the system is at equilibrium: s =S¢y, k5, = konSeq

Post-bleach, f, ¢ correspond only to fluorescing GFP-GR molecules/complexes
e Assume sites and complexes do not diffuse: Dy =10, D. =0

e Assume bleach profile is a perfect cylinder

e Neglect cell boundaries and presence of nucleoli

e Assume bleaching is instantaneous

These assumptions reduce the problem to 2D radial geometry.

(All these assumptions are wrong, naturally!)



Reaction-diffusion model for FRAP w/binding

Ouf = DeV2f — kX f+koge
oc=Fk., f—komc

Normalized equilibrium: k) Foq = koCeq,  Feq + Ceq = 1.
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Initial value problem for modeling FRAP w/binding

With u=Fq—f, v=C0sq—c

(

Fe <
O = DeV2u — kX u + kog v u(0) = ¢ e
0 r>w
(Coq T <
ov ==k, u—kogv v(0)=<¢ e
0 r>w

\

Measurable light intensity proportional to f + c. Average over the bleach spot:

frap(t ——/ (f+c)d



Model solution by Laplace transform and numerical inversion

u(r,p) = / e Plu(r,t)dt satisfies —V2u+@Gu=V 1,4
0

p k;n Feq ( k;kn )
=— |1+ : V = 1+
17D ( p+7€oﬂ-‘> Dy P+ kost
Averaging the solution u over r < w yields the FRAP recovery transform:

- 1 F
frap(p) = = — —
p P

[ Co
(1 — 2K1(qw)11(qw)> (1 +p—|—]€ ff) _p—|—]2ff

e Hollenbeck, K. J. (1998) INVLAP.M: A matlab function for numerical inversion
of Laplace transforms by the de Hoog algorithm,

http: //www.isva.dtu.dk/staff /karl /inviap.htm
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A useful Laplace transform pair lacking a proof

With =z >2'>0, ¢q=+/p/D,

Fr) = Liae ) Kolar) = [ e (o),

1 x2 4+ x'? xx'
t) = — — 1,
f(#) = 5 exp ( ADt ) (2Dt>

Tables: Crank (1975, p378), Carslaw & Jaeger, Oberhetting & Badii 15.9

This yields the explicit pure diffusion FRAP recovery curve of Soumpasis 1983:

ot = e () (0 (3) + 1. (). w=75,



Results I: What one can measure in practice
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Pure-Diffusion Dominant

Effective Diffusion
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Results |: Classification of limiting regimes

Derived through nondimensionalization, scaling, and asymptotics

,w2

Dy’
Data fitting determines D;. No measurable information about binding.

o Pure diffusion: ¢~ 0, O0.f = D¢{V?f. T =

e Effective diffusion: fast reaction, slow diffusion.
Df w2

= , TD = :
1+ (k% ko). =~  Des

e Reaction dominant: diffusion fast compared to reaction & time scale:

Deg Can use to measure: k> /kog

frap(t) = 1 — Ceqe %! Can use to measure both k. and kog.

e Full model

Plus: description of transition zones



Results I: Constraints/conditions for limiting regimes

Derived through nondimensionalization, scaling, and asymptotics

e Pure diffusion:

2
kX [k, 1, ~ = —.
2 kot K T ~TD D
e Effective diffusion: fast reaction, slow diffusion.
w? w?
kX — > 1 ~
on ). > 1, 7 Dor

e Reaction dominant: diffusion fast compared to reaction & time scale:

w koff
kX — <1
on Df << Y kgn

<1
e Full model

(Hiding here are convergence theorems. . . )
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Results Il: Physical conclusions

e Laid out a protocol for identifying roles of diffusion and reaction in FRAP
experiments

e Predicted a new non-specific binding state of GR to DNA matrix, with average

binding time
1

off

~ 12.7 ms

e ATP-depleted GR binding may involve 2-species reactions

17
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Results Il: Physical conclusions

ATP depletion slows GFP-GR recovery
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Summary

We clarify the roles of diffusion, binding, and number of binding states in
FRAP recovery experiments.

Significant improvement on earlier styles of inference based on existence of
fast/slow parts of recovery curves and failure to fit the pure diffusion model.

Subsequent work has improved the modeling of

e cellular geometry
e spatial bleaching intensity profile
e temporal bleaching profile

e site diffusion

A role for fractal geometric structures has been suggested.
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Two later references regarding FRAP

Current Opinion in Cell Biology 2010, 22:403-411

FRAP and kinetic modeling in the analysis of nuclear protein
dynamics: what do we really know?

Florian Mueller', Davide Mazza', Timothy J Stasevich' and

James G McNally

Biophysical Journal Volume 989 November 2010 2737-2747 2737

A Quantitative Approach to Analyze Binding Diffusion Kinetics
by Confocal FRAP

Minchul Kang,” Charles A. Day,” Emmanuele DiBenedetto,* and Anne K. Kenworthy*5*

TDepartment of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; *Department
of Mathematics, Vanderbilt University, Nashville, Tennessee; and SDepartment of Cell and Developmental Biology, Vanderbilt University
School of Medicine, Nashville, Tennessee
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Mathematical models of anomalous diffusion

Definitions of anomalous diffusion differ, e.g.: (x?) ~tP, p# 1.

Two basic types of models, associated with different kinds of random walks

e Superdiffusive behavior: Lévy flights, heavy-tailed jump distributions

e Subdiffusive behavior: random walks with waiting-time distributions

(Not discussed: nonlinear models, single-file models, random media,. . . )
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Mathematical models of anomalous diffusion |: superdiffusion

e Lévy-Khintchine theory of diffusion processes & semigroups
(characterizes space- and time-stationary Markov processes)

e «-stable Lévy processes, Fractional heat equation:  Qiu + (—A)*u =0

Fig. 2. Lévy trajectory with Lévy index 1.5 consisting of 7000 steps. The lines connect successive locations of the random walker,
illustrating the clustering nature which gives rise to the fractal graph dimension (compare [16]). The small trajectory corresponds to a
Gaussian random walk with the same number of steps. The space-filling character in this 2-D case contrasts the fractal structure of the

Lévy trajectory.
R. Metzler, T.F. Nonnenmacher | Chemical Physics 284 (2002) 67-90



Mathematical models of anomalous diffusion 1l: subdiffusion

e Subdiffusion: Fractional time derivatives, CTRW /Montroll-Weiss models

Mechanism: Continuous-time random walks with waiting-time distributions

. Phys. A: Math. Gen. 37 (2004) R161-R208 PII: S0305-4470(04)71319-0

TOPICAL REVIEW

The restaurant at the end of the random walk: recent
developments in the description of anomalous
transport by fractional dynamics

A large physical literature: Ra R st L

n

u(xz,t) = U(t)ug(x) + /0 ot — 7')/ w(x —y)u(y, 7)dy dr

Gorenflo & Mainardi (2006) argue that a robust limit (analog of a-stable laws)
involves Mittag-Leffler waiting time distributions:

B(t) = —B:Es(~t7),  Ep(x)=>
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Double porosity (subdiffusion) models by homogenization

Barenblatt, Zheltov, Kochina 1960: Reaction-diffusion modell!

Derivation via two-scale homogenization theory/periodic unfolding:

e Arbogast, Douglas, Hornung SIAM J. Math. Anal. 21 (1990) 893,
e Hornung & Showalter, J. Math. Anal. Appl. 47 (1990) 69

e G. W. Clark, J. Math. Anal. Appl. 226 (1998) 364
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Double porosity (subdiffusion) models by homogenization

FIGURE 1. The geometry and the periodicity cell
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Outlook

Experimental technique, detail, data is amazing and fast evolving
(FRAP, fluorescence correlation spectroscopy, single-molecule tracking)

Open questions abound! (And seem to be harder than they look)

e What kinds of CTRW /anomalous diffusion models arise naturally?

e Classification theorems are missing!

(By analogy to Markov processes/Levy processes: infinitely divisible laws,
Levy-Khintchine representation formula for Markovian random walks.)

There is a great diversity of other types of transport phenomena in biology:
microtubulues, filament networks, velocity-jump and velocity-diffusion
processes. . .
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e What kinds of CTRW /anomalous diffusion models arise naturally?

e Classification theorems are missing!
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There is a great diversity of other types of transport phenomena in biology:
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processes. . .

Thank you!



