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Apologia — Why this topic?

Goals: Tell a story, about

• how one interdisciplinary collaboration worked, or not

• how mathematics aided biophysics in one project, cited/blamed 280+ times:

• how mathematics may help model diffusive transport in crowded and
heterogeneous cellular environments (in the future)

The story starts with an email, out of the blue...
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Basic Q: How do DNA transcription factors find binding sites?

Experimental techniques/ingredients:

• GR = glucocorticoid receptor (DNA transcription factor)

• GFP = Green Fluourescent Protein

• confocal microscopy
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Schematic of a FRAP experiment
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FRAP experiment geometry
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The problem: experimental data fail to fit
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Failure to fit, part 2
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Basic reaction-diffusion model

Free GFP-GR (F) reacts with free binding sites (S) to form a bound complex (C)

F + S
koff−−→←−−
k∗on

C

Concentrations: f = [F ], s = [S], c = [C]

∂tf = Df∇2f − kon fs+ koff c

∂ts = Ds∇2s− kon fs+ koff c

∂tc = Dc∇2c+ kon fs− koff c
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Simplifying assumptions

Pre-bleach, the system is at equilibrium: s ≡ Seq, k∗on = konSeq

Post-bleach, f , c correspond only to fluorescing GFP-GR molecules/complexes

• Assume sites and complexes do not diffuse: Ds = 0, Dc = 0

• Assume bleach profile is a perfect cylinder

• Neglect cell boundaries and presence of nucleoli

• Assume bleaching is instantaneous

These assumptions reduce the problem to 2D radial geometry.
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(All these assumptions are wrong, naturally!)



10

Reaction-diffusion model for FRAP w/binding

∂tf = Df∇2f − k∗on f + koff c (1)

∂tc = k∗on f − koff c

Normalized equilibrium: k∗onFeq = koffCeq, Feq + Ceq = 1.
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Initial value problem for modeling FRAP w/binding

With u = Feq − f , v = Ceq − c,

∂tu = Df∇2u− k∗on u+ koff v u(0) =

{
Feq r < w

0 r > w

∂tv = k∗on u− koff v v(0) =

{
Ceq r < w

0 r > w

Measurable light intensity proportional to f + c. Average over the bleach spot:

frap(t) =
1

πw2

∫
r<w

(f + c) dx
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Model solution by Laplace transform and numerical inversion

ū(r, p) =

∫ ∞
0

e−ptu(r, t) dt satisfies −∇2ū+ q2ū = V 1r<w

q =
p

Df

(
1 +

k∗on

p+ koff

)
, V =

Feq

Df

(
1 +

k∗on

p+ koff

)

Averaging the solution ū over r < w yields the FRAP recovery transform:

frap(p) =
1

p
− Feq

p

(
1− 2K1(qw) I1(qw)

)(
1 +

k∗on

p+ koff

)
− Ceq

p+ koff

• Hollenbeck, K. J. (1998) INVLAP.M: A matlab function for numerical inversion
of Laplace transforms by the de Hoog algorithm,
http://www.isva.dtu.dk/staff/karl/invlap.htm
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A useful Laplace transform pair lacking a proof

With x > x′ > 0, q =
√
p/D,

F (p) = Iν(qx
′)Kν(qx) =

∫ ∞
0

e−ptf(t) dt,

f(t) =
1

2t
exp

(
−x

2 + x′2

4Dt

)
Iν

(
xx′

2Dt

)
Tables: Crank (1975, p378), Carslaw & Jaeger, Oberhetting & Badii 15.9

This yields the explicit pure diffusion FRAP recovery curve of Soumpasis 1983:

frap(t) = exp
(τD

2t

)(
I0

(τD
2t

)
+ I1

(τD
2t

))
, τD =

w2

Df
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Results I: What one can measure in practice
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Results I: Classification of limiting regimes

Derived through nondimensionalization, scaling, and asymptotics

• Pure diffusion: c ∼ 0, ∂tf = Df∇2f . τD =
w2

Df
.

Data fitting determines Df. No measurable information about binding.

• Effective diffusion: fast reaction, slow diffusion.

Deff =
Df

1 + (k∗on/koff)
, τD =

w2

Deff
. Can use to measure: k∗on/koff

• Reaction dominant: diffusion fast compared to reaction & time scale:

frap(t) = 1− Ceqe
−kofft Can use to measure both k∗on and koff.

• Full model

Plus: description of transition zones
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Results I: Constraints/conditions for limiting regimes

Derived through nondimensionalization, scaling, and asymptotics

• Pure diffusion:

k∗on/koff � 1, τ ∼ τD =
w2

Df
.

• Effective diffusion: fast reaction, slow diffusion.

k∗on

w2

Df
� 1, τ ∼ w2

Deff

• Reaction dominant: diffusion fast compared to reaction & time scale:

k∗on

w2

Df
� 1,

koff

k∗on

. 1

• Full model

(Hiding here are convergence theorems. . . )
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Results II: Physical conclusions

• Laid out a protocol for identifying roles of diffusion and reaction in FRAP
experiments

• Predicted a new non-specific binding state of GR to DNA matrix, with average
binding time

1

koff
∼ 12.7 ms

• ATP-depleted GR binding may involve 2-species reactions
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Results II: Physical conclusions
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Summary

We clarify the roles of diffusion, binding, and number of binding states in
FRAP recovery experiments.

Significant improvement on earlier styles of inference based on existence of
fast/slow parts of recovery curves and failure to fit the pure diffusion model.

Subsequent work has improved the modeling of

• cellular geometry

• spatial bleaching intensity profile

• temporal bleaching profile

• site diffusion

A role for fractal geometric structures has been suggested.
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Two later references regarding FRAP
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Mathematical models of anomalous diffusion

Definitions of anomalous diffusion differ, e.g.: 〈x2〉 ∼ tp , p 6= 1.

Two basic types of models, associated with different kinds of random walks

• Superdiffusive behavior: Lévy flights, heavy-tailed jump distributions

• Subdiffusive behavior: random walks with waiting-time distributions

(Not discussed: nonlinear models, single-file models, random media,. . . )
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Mathematical models of anomalous diffusion I: superdiffusion

• Lévy-Khintchine theory of diffusion processes & semigroups
(characterizes space- and time-stationary Markov processes)

• α-stable Lévy processes, Fractional heat equation: ∂tu+ (−∆)αu = 0
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Mathematical models of anomalous diffusion II: subdiffusion

• Subdiffusion: Fractional time derivatives, CTRW/Montroll-Weiss models

Mechanism: Continuous-time random walks with waiting-time distributions

A large physical literature:

u(x, t) = Ψ(t)u0(x) +

∫ t

0

φ(t− τ)

∫
Rn
w(x− y)u(y, τ) dy dτ

Gorenflo & Mainardi (2006) argue that a robust limit (analog of α-stable laws)
involves Mittag-Leffler waiting time distributions:

φ(t) = −∂tEβ(−tβ), Eβ(z) =
∞∑
n=0

zn

Γ(1 + βn)
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Double porosity (subdiffusion) models by homogenization

Barenblatt, Zheltov, Kochina 1960: Reaction-diffusion model!

Derivation via two-scale homogenization theory/periodic unfolding:

• Arbogast, Douglas, Hornung SIAM J. Math. Anal. 21 (1990) 893,

• Hornung & Showalter, J. Math. Anal. Appl. 47 (1990) 69

• G. W. Clark, J. Math. Anal. Appl. 226 (1998) 364



25

Double porosity (subdiffusion) models by homogenization

∂u

∂t
− ∂

∂xi

(
ahij

∂u

∂xj

)
+

∫
∂Y

Aij
∂U

∂yj
· νi dS = 0 in Ω× (0, T )

∂U

∂t
− ∂

∂yi

(
Aij

∂U

∂yj

)
= 0 in Ω× Y × (0, T )
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Outlook

Experimental technique, detail, data is amazing and fast evolving
(FRAP, fluorescence correlation spectroscopy, single-molecule tracking)

Open questions abound! (And seem to be harder than they look)

• What kinds of CTRW/anomalous diffusion models arise naturally?

• Classification theorems are missing!

(By analogy to Markov processes/Levy processes: infinitely divisible laws,
Levy-Khintchine representation formula for Markovian random walks.)

There is a great diversity of other types of transport phenomena in biology:
microtubulues, filament networks, velocity-jump and velocity-diffusion
processes. . .
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• Classification theorems are missing!
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processes. . .

Thank you!


