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Outline

1. Biological motivation
I complex mechanisms ⇒ competition of forces

2. Phase-field model
I coupled equations for cell motility

3. Sharp interface limit
I curvature motion ⇒ development of non-linear contribution

4. Analytical/numerical results
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Motile cells

Keratocyte cells:1 found in human
cornea, fish scales. Central focus of
modern experiments; move by
crawling on substrate

Importance - integral to various
biological responses
e.g., healing corneal wounds

Ideal cells for experiments/modeling:

1. Travel in straight lines

2. Self-propagate many times their
own cell lengths

3. Maintain stereotypical shape
during motion

Movie of steady keratocyte motion
Source: EL Barnhart

1Typical length scale: 100µm
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Overall cell structure

Lamellipod

Actin array (stable)

Nucleus

Myosin and actin (loose)

Front
(direction of motion)

I Actin (protein) filaments
protrude front of the cell

I Surface tension contributes
to cell shape ⇒ tension
minimized when cell is
circular

I Ion transport enforces
volume preservation
(osmotic regulation)

I Remark: Mathematical
model should shed light on
these complex
biological/physical
interactions
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Phase-field model

Aronson, et al. (2011) used a phase-field approach to model cell
motility

Model: Phase-field variable, ρ(x , t) - describes location of the cell;
takes value 1 inside the cell and 0 outside with a smooth ε-width
transition at the boundary

Vector field, P(x , t) - polar
orientation of the actin filaments

This model is accurate and
simpler than previous models (no
matching BC at interface)

ρ(x,t)≈ 1

ρ(x,t)≈ 0 ɛ 

P(x,t)
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Phase-field model

Ω ⊂ R2 - bounded smooth domain (large substrate)
∂ρε
∂t

= ∆ρε − 1
ε2W

′(ρε)− Pε · ∇ρε + λε(t)

∂Pε
∂t

= ε∆Pε − 1
εPε − β∇ρε

in Ω (1)

Boundary conditions: ∂νρε = 0 and Pε = 0
W (ρ) = 1

4ρ
2(1− ρ)2 - double equal well potential (ρ = 1, 0),

β - contains all physics (actin protrusion strength and
polymerization rate, adhesion),
ε - width of the transition layer,

λε(t) := 1
|Ω|
∫

Ω

(
1
ε2W

′(ρε) + Pε · ∇ρε
)

- volume constraint

Distinct features: gradient coupling, non-local mass preservation

Take limit ε→ 0 in (1) ⇒ sharp interface limit equation
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Features of current equations

In recent work of Berlyand, et al. (2014) sharp interface limit of (1)
derived:

V = κ+
β

c0
Φ(V )− 1

|Γ(t)|

∫
Γ(t)

(
κ+

β

c0
Φ(V )

)
ds. (2)

V - inward normal velocity, κ - curvature, β - physical parameter,
c0 =

√
3/2 (depends only on double-well potential W )

Φ - known non-linear function
Equation (2) is an equation for the evolution of a planar curve Γ (i.e.,
given Γ, one computes κ and V )

V

Two regimes: Subcritical β < βcr , supercritical β > βcr
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Comparison of subcritical/supercritical β

Consider F (V ) := V − β
c0

Φ(V )

Subcritical regime (β < βcr ): F is monotone
Supercritical regime (β > βcr ): F is non-monotone

Small β Moderate/Large β

Always monotone => Invertible Not monotone => Non-invertible

Unique Solution Non-unique Solution

VV

Subcritical β Supercritical β

I Supercritical β ⇒ Non-uniqueness of solutions, hysteresis

Matthew Mizuhara Motility of keratocyte cells: asymptotic and numerical analysis via a phase field model



Crawling cell motility
Phase-field model

Analytical/Numerical results

Goals (MM, Berlyand, Rybalko, Zhang)

For β < βcr , investigate existence, uniqueness and regularity of
evolution of curves Γ(t) for equation

V = κ+
β

c0
Φ(V )− 1

|Γ(t)|

∫
Γ(t)

(
κ+

β

c0
Φ(V )

)
(3)

Analytical objectives:

I Prove existence of curves traveling via (3)

I Study traveling wave solutions of (3)

Numerical objectives:

I Develop algorithm to compute evolution of curves

I Quantify effect of physical parameter β on net motion

I Study how initial geometry affects net motion
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Analytical results

Theorem 1

Let 0 < β < βcr . Given Γ0 ∈W 1,∞, there exists T = T (Γ0) > 0 such
that a family of curves Γ(t) ∈ H2 exists for t ∈ (0,T ] satisfying the
evolution equation (3) with Γ(0) = Γ0.

Proof idea: Write the evolution equation as a PDE and prove existence for
smooth (H2) data. Passing to W 1,∞ requires uniform estimates (independent
of H2 initial data) based on a maximum principle argument and classical results
on Hölder continuity of solutions to quasilinear PDEs.

Remark: W 1,∞ initial conditions ⇒ corners

Theorem 2

Let 0 < β < βcr . There are no traveling wave solutions of (3) other than
trivial stationary circles.

No moving traveling waves ⇒ can we still observe transient motion of
curves for subcritical β?
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Numerical Results

Main difficulty: Discretizing curve gives rise to coupled system of non-linear
equations ⇒ hard to solve and preserve volume
Resolution: Develop splitting scheme which alternatively resolves
1) non-linearity 2) volume preservation
Experiment: Fix Γ(0). Compute Γ(t) propagating via (3) for 0 < β < βcr ;
compare to β = 0 (volume preserving curvature motion)

ζ

ζ

D
rif
t

Observations: Curves propagating via (3) with 0 < β < βcr
(i) converge to a steady-state circle
(ii) transient motion; distance proportional to 1) β and 2) asymmetry ζ
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Conclusions

I Aronson, et al. proposed a phase-field model to describe
keratocyte cell motility

I Berlyand, et al. derived the sharp interface limit equation ⇒
non-linear, non-local equation describing evolution of planar
curves

I We investigate this sharp interface limit equation in the
subcritical β < βcr regime:

I Analytical results: existence of solutions, non-existence of
traveling waves

I Numerical results: convergence to steady-state circle, drift
distance depending on physical parameter β and initial
geometry
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Thank you

Thank you for your attention!
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Appendix
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Splitting scheme

Given a curve Γ, discretize it by N points: pi = (xi , yi ), i = 1, . . . ,N.
Naive discrete approximation:

Vi = κi + βΦ(Vi )−
1

|Γ|

N∑
j=1

κj + βΦ(Vj)dS , (4)

κi , |Γ|, dS - discrete curvature, curve length, and line element, resp.
Non-linearity and area preservation ⇒ level-set methods not available
Introduce the following splitting scheme:

1. Fix an auxiliary parameter C ∈ R

2. Use an iteration method to solve

Ṽi = κi + βΦ(Ṽi )− C (local equation) (5)

3. Temporarily update Γ by the velocity profile Ṽ : p̃i = pi + Ṽini ,
ni - discrete inward pointing normal. Compute change in area

4. Adjust auxiliary parameter C ; repeat (2)-(3) until area is preserved
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Parametrization of curve

Let Γ̃0 be a C 4 smooth reference curve in a small neighborhood of
Γ0 with curvature κ0 and let Γ̃0 be parametrized by arc length
parameter σ ∈ I . Then

Γ(σ, t) = Γ̃0(σ) + u(σ, t)ν(σ),

with ν the normal vector to Γ̃0 and u solves

ut −
S

1− uκ0
Φ

(
1− uκ0

S
ut

)
=

S

1− uκ0
κ(u)

− S

(1− uκ0)L(u)

(∫
I

Φ

(
1− uκ0

S
ut

)
Sdσ + 2π

)
,

where S =
√
u2
σ + (1− uκ0)2, and L(u) is the total arc length of

u.
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Result on asymptotic equation

Consider the 1d model:
∂ρε
∂t

= ∂2
xρε −

W ′(ρε)

ε2
+ Pε∂xρε +

F (t)

ε
, x ∈ R1

∂Pε

∂t
= ε∂2

xPε −
1

ε
Pε + β∂xρε.

(6)

Note: Problem now exists on R and F (t) is an arbitrary function.

Let θ0 be the standing wave solution θ′′0 = W ′(θ0).

Theorem. Let ρε and Pε solve (6) on [0,T ] with “nice” initial

data. For β sufficiently small, we have ρε = θ0

(
x−xε(t)

ε

)
+ ερ

(1)
ε

where xε(t) is the interface location between 0 and 1 phase.
Moreover xε(t)→ x0(t) with

−c0ẋ0(t) = βΦ(ẋ0(t)) + F (t),Φ(−V ) :=
1

β

∫
ψ|θ′0|2dy
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Proof outline

Approximate ρε and Pε as

ρε ≈ θ0

(
x − xε(t)

ε

)
+

N∑
i=1

εiθi

(
x − xε(t)

ε
, t

)
, Pε ≈

N∑
i=0

εiψi

(
x − xε(t)

ε
, t

)
.

Expand xε(t) in an ε-series; substitute and match powers of ε:

θ′′0 = W ′(θ0)

−θ′′1 + W ′′(θ0)θ1 = −V0θ
′
0 + Ψ0θ

′
0 + F (t)

−θ′′2 + W ′′(θ0)θ2 = −V1θ
′
0 − V0θ

′
1 −

W ′′′(θ0)

2
θ2

1 + Ψ0θ
′
1 + Ψ1θ

′
0

and

Ψ′′0 − V0Ψ′0 −Ψ0 = −βθ′0,
Ψ′′1 − V0Ψ′1 −Ψ1 = −βθ′1 + V1Ψ′0 + Ψ̇0,

Ψ′′2 − V0Ψ′2 −Ψ2 = −βθ′2 + V1Ψ′1 + V2Ψ′0 + Ψ̇1.
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Eigenvalue of linearized Allen-Cahn

Since θ′′0 = W ′(θ0) then θ′0 is a zero eigenfunction of the operator

L(f ) = f ′′ −W ′′(θ0)f .

The Fredholm alternative implies that g ∈ ImL, if and only if
g ∈ (KerL)⊥. One can show (KerL)⊥ = span{θ′0}. In other
words, the equations for θi have solutions if and only if∫

(−V0θ
′
0 + Ψ0θ

′
0 + F (t))θ′0 = 0,∫

(−V1θ
′
0 − V0θ

′
1 −

W ′′′(θ0)

2
θ2

1 + Ψ0θ
′
1 + Ψ1θ

′
0)θ′0 = 0.

This gives the correct interface equation. The result follows by
completing estimates on energy.
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Classical result

Gage proved that a convex curve moving under area preserving
curvature motion will converge to a circle exponentially.
Let L = L(t) be the length of the curve at time t, A - area, k -
curvature, N - normal vector

1. Lt = −
∫
〈V , kN〉ds

2. Lt ≤ 0 for all t (the curve is length shortening)

3.
(
L2

A − 4π
)
≤ Ce

−2π
A

t

Using the Bennesen inequality,(
L2

A
− 4π

)
≥ π2

A
(rout − rin)2

where rout is the radius of the encompassing circle and rin is the
radius of the inscribed circle, the result follows.

It is important to note that he also must prove that convex curves
remain convex and singularities do not develop.
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Small β

We expect for small values of β that a similar result should hold.
We are currently working to prove that (2) gives rise to length
shortening flow.

If we apply similar methods as Gage, we compute the following

Lt = −
∫

k2 +
4π2ν2

L
+ β

∫ (
2πν

L
− k

)
Φ ≤ −θ + βθ1/2.

Here, θ = −
∫
k2 + 4π2ν2

L is a measure of how “far” we are from a
circle. If length is decreasing then θ → 0. This would imply that
β → 0. Thus, new techniques are required to complete this result.
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Cyclic view of motion

Orientation - choice of direction
based on external cues (chemical
gradients, mechanical deformations)

Protrusion - extension of cell
membrane in direction of motion.
Polymerization of actin filaments -
backbone of protrusion

Adhesion - attachment of a cell to
the extra-cellular matrix (ECM)

Retraction - contraction of
actomyosin cytoskeleton
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Plan of Computational Approach

Consider

V = κ+
β

c0
Φ(V )− 1

|Γ(t)|

∫
Γ(t)

(
κ+

β

c0
Φ(V )

)
.

Let f (V ) := 1
c0

(
Φ(V )− 1

|Γ|
∫

Γ(t) Φ(V )
)
.

Perturbation theory motivates iterative scheme:

V0 = κ− 1

|Γ(t)|

∫
Γ(t)

κ,

V1 = V0 + βf (V0),

...

Vn = V0 + βf (Vn−1).
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Convergence for Small β

Observe

‖Vn − Vn−1‖L1 = ‖β(f (Vn−1)− f (Vn−2))‖

=

∥∥∥∥∥ βc0

(
Φ(Vn−1)− Φ(Vn−2)− 1

|Γ|

∫
Γ(t)

Φ(Vn−1)− Φ(Vn−2)

)∥∥∥∥∥
≤ 2β

c0

(∫
|Φ(Vn−1)− Φ(Vn−2)|

)
≤ 2β

c0
|Φ′(V )|L∞‖Vn−1 − Vn−2‖L1

So for β small enough this iterative scheme converges.
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Lamellipodia

The lamellipod is the leading edge of the cell which drives
locomotion.

The dendritic-nucleation hypothesis predicts a precise pattern of
angular branching of actin filaments.
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The major conclusion
from this model is that
cell motion is dictated
by an array of
progressing filaments,
not by individual
filaments.
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Contraction

Another key protein in cell motility is myosin, responsible for
contraction.

Essentially, it uses energy from the ATP hydrolysis to enact a force
on existing actin filaments.

Actin disassembly leads to piling of “unorganized” actin filaments
at the rear of the cell on which myosin can act, effectively pulling
the rear of the cell forward.
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Contraction

Another key protein in cell motility is myosin, responsible for
contraction.

Essentially, it uses energy from the ATP hydrolysis to enact a force
on existing actin filaments.

Actin disassembly leads to piling of “unorganized” actin filaments
at the rear of the cell on which myosin can act, effectively pulling
the rear of the cell forward.
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Residuals

Modify the expressions

ρε = ρ̃ε + εαuε, and Pε = P̃ε + εαQε.

Plugging in these expressions into the original equation, we get

∂uε
∂t

=
u′′ε
ε2
−V0u

′
ε

ε
−W ′′(θ0)uε

ε2
−W ′′′(θ0)uεθ1

ε
+

Ψ0u
′
ε

ε
+
Qεθ

′
0

ε
+Rε(t, y).

(7)
and

∂Qε
∂t

=
Q ′′ε
ε
− V0Q

′
ε

ε
− Qε

ε
+
βu′ε
ε

+ εN−αmε(t, y). (8)

Our goal is to obtain bounds on uε and Qε.
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Proof Outline

Proof idea:1. Write uε(y , t) = θ′0(y)[νε(t, y) + ξε(t)] where θ′0νε is
orthogonal to θ′0.
This factoring of uε is useful because it allows us to use a modified
Poincaré inequality.
2. Then, can obtain a bound

d

2dt
‖uε‖2

L2 +
1

2ε2

∫
(θ′0)2(ν′ε)2dy ≤ Cξ2

ε+
1

ε

[∫
Qε(θ′0)2(νε + ξε)dy −

∫
ψ

′
0(θ′0)2dyξ2

ε

]
+

∫
Rεθ

′
0(νε+ξε)dy.

3. To estimate uε, only must bound 1
ε terms. (Use that ψ0 solves

ψ′′0 − V0ψ
′
0 − ψ0 = −βθ′0.)

4. Bound the remaining terms to get the energy estimates:
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Proof End

Define energies

Eε(t) =

∫
(θ′0)2

ν
2
εdy + c0ξ

2
ε +

1

cpβ2ε

∫
B2
εdy +

1

ε

∫
D2
εdy

Dε(t) =
1

8ε2

{∫
(θ′0)2(ν′ε)2dy +

∫
B2
εdy +

∫
(B′

ε)2dy +

∫
D2
εdy +

∫
(D′

ε)2dy

}
+

(
β

8
− cβ2

)
ξ̇

2
ε.

Then can show

Ėε +
1

2
Dε ≤ cEε + cεE3/2

ε + cεE2
ε + cε6E3

ε + c(ε+ ε2E1/2
ε + ε4E3/2

ε )Dε.

If Eε(t) ≤ c for t ∈ [0, t∗) then Ėε ≤ cEε. For small ε the result holds.
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Actin protein

The cells on which we focus use actin treadmilling as a means of
transportation (e.g. fish keratocytes).
Actin is a globular (spherical) protein which exists in two forms:
G-actin and F-actin.
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G-actin is a monomer of actin (∼ 5.4 nm) containing a polarity:
one end is barbed and the other is pointed (analogy is an ice-cream
cone).

F-actin is a filament of actin formed by assembly of G-actin. The
barbed end assembles and disassembles monomers two orders of
magnitude faster than the pointed end (due to ATP binding).
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ATP capping and polarity

In the absence of nucleotide hydrolysis, the barbed and pointed
ends of F-actin polymerize and depolymerize at the same rates.

However, G-actin binds to ATP at the barbed end and the
following hydrolyzation occurs:

ATP → ADP + Pi + ∆E .
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ADP-actin has the tendency to dissemble at the pointed end
resulting in a net treadmill effect.

ADP-ATP re-charge occurs in the plasma membrane resulting in a
basic mechanism for cell motility.

This cycle turns chemical energy into mechanical energy.
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