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We all know: the entropy of a probability distribution p is

h(p) = −
∑

p(xi ) log p(xi ). (1)

It does not depend on the nature of outcomes xi ,

only upon

probabilities p(xi ). (One says h(p) is context-free.)

Entropy is useful in a number of areas (each time we deal with

information/uncertainty/complexity/variability of trajectories).

However, in many cases the nature of outcomes xi is important.

So, we may modify the definition making it context-dependent:

hw
φ (p) = −

∑
φ(xi )p(xi ) log p(xi ). (2)
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Here function xi 7→ φ(xi ) represents a weight of an outcome xi ,

i.e., its ‘value‘ for us.

I‘ll focus mainly non-negative weight functions φ(x) ≥ 0,

but my fantasy suggests that negative values may also be

of some use, both theoretically (analytically) and in applications.

One example is where φ(x) = 1(x ∈ A) where A is a particular

sub-collection of outcomes. Here

hw
φ (p) = −

∑
x∈A

φ(xi )p(xi ) log p(xi ) (3)

i.e., we disregard the information coming from outcomes x 6∈ A.

Yuri Suhov WEIGHTED ENTROPY



-2-

Here function xi 7→ φ(xi ) represents a weight of an outcome xi ,

i.e., its ‘value‘ for us.

I‘ll focus mainly non-negative weight functions φ(x) ≥ 0,

but my fantasy suggests that negative values may also be

of some use, both theoretically (analytically) and in applications.

One example is where φ(x) = 1(x ∈ A) where A is a particular

sub-collection of outcomes. Here

hw
φ (p) = −

∑
x∈A

φ(xi )p(xi ) log p(xi ) (3)

i.e., we disregard the information coming from outcomes x 6∈ A.

Yuri Suhov WEIGHTED ENTROPY



-2-

Here function xi 7→ φ(xi ) represents a weight of an outcome xi ,

i.e., its ‘value‘ for us.

I‘ll focus mainly non-negative weight functions φ(x) ≥ 0,

but my fantasy suggests that negative values may also be

of some use, both theoretically (analytically) and in applications.

One example is where φ(x) = 1(x ∈ A) where A is a particular

sub-collection of outcomes. Here

hw
φ (p) = −

∑
x∈A

φ(xi )p(xi ) log p(xi ) (3)

i.e., we disregard the information coming from outcomes x 6∈ A.

Yuri Suhov WEIGHTED ENTROPY



-2-

Here function xi 7→ φ(xi ) represents a weight of an outcome xi ,

i.e., its ‘value‘ for us.

I‘ll focus mainly non-negative weight functions φ(x) ≥ 0,

but my fantasy suggests that negative values may also be

of some use,

both theoretically (analytically) and in applications.

One example is where φ(x) = 1(x ∈ A) where A is a particular

sub-collection of outcomes. Here

hw
φ (p) = −

∑
x∈A

φ(xi )p(xi ) log p(xi ) (3)

i.e., we disregard the information coming from outcomes x 6∈ A.

Yuri Suhov WEIGHTED ENTROPY



-2-

Here function xi 7→ φ(xi ) represents a weight of an outcome xi ,

i.e., its ‘value‘ for us.

I‘ll focus mainly non-negative weight functions φ(x) ≥ 0,

but my fantasy suggests that negative values may also be

of some use, both theoretically (analytically) and in applications.

One example is where φ(x) = 1(x ∈ A)

where A is a particular

sub-collection of outcomes. Here

hw
φ (p) = −

∑
x∈A

φ(xi )p(xi ) log p(xi ) (3)

i.e., we disregard the information coming from outcomes x 6∈ A.

Yuri Suhov WEIGHTED ENTROPY



-2-

Here function xi 7→ φ(xi ) represents a weight of an outcome xi ,

i.e., its ‘value‘ for us.

I‘ll focus mainly non-negative weight functions φ(x) ≥ 0,

but my fantasy suggests that negative values may also be

of some use, both theoretically (analytically) and in applications.

One example is where φ(x) = 1(x ∈ A) where A is a particular

sub-collection of outcomes.

Here

hw
φ (p) = −

∑
x∈A

φ(xi )p(xi ) log p(xi ) (3)

i.e., we disregard the information coming from outcomes x 6∈ A.

Yuri Suhov WEIGHTED ENTROPY



-2-

Here function xi 7→ φ(xi ) represents a weight of an outcome xi ,

i.e., its ‘value‘ for us.

I‘ll focus mainly non-negative weight functions φ(x) ≥ 0,

but my fantasy suggests that negative values may also be

of some use, both theoretically (analytically) and in applications.

One example is where φ(x) = 1(x ∈ A) where A is a particular

sub-collection of outcomes. Here

hw
φ (p) = −

∑
x∈A

φ(xi )p(xi ) log p(xi ) (3)

i.e., we disregard the information coming from outcomes x 6∈ A.

Yuri Suhov WEIGHTED ENTROPY



-3-

Quantity hw
φ (p) in Eqn (2) is called the weighted entropy

of probability distribution p with weight function φ.

It was proposed in late 1960‘s and analyzed in a handful of

papers, but largely was left unnoticed. In the form of (3) we

used it, on an ad hoc basis, in our papers

G. Frizelle and Y. M. Suhov. An entropic measurement of

queueing behaviour in a class of manufacturing operations.

Proc. Royal Soc. A, 457 (2001), 1579–1601
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and

G. Frizelle and Y. M. Suhov. The measurement of complexity in

production and other commercial systems. Proc. Royal Soc. A,

464 (2008), 2649–2668.

We analyzed data from a variety of industrial/commercial

systems and numerically calculated the value of the weighted

entropy hw
φ (p), with φ = 1

¯
( · ∈ A), for various parts of a

production process.

We had to make a judicial choice of set A.

It helped to determine a bottleneck that slowed down the

whole system, which was difficult to identify by other methods.
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A similar formalism can be proposed for differential entropy

when we work with a probability density function (PDF):

hw
φ (f ) = −

∫
φ(x)f (x) log f (x)dx . (4)

E.g., take f (x) = f No
C (x) where f No

C (x) is a multi-variate

Gaussian/normal PDF with mean 0 and covariance matrix C:

f No
C (x) =

exp
[
− xTC−1x/2

]
[(2π)ddetC ]1/2

, x ∈ Rd .
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Then the weighted entropy can be expressed as

hw
φ (f

No
C ) =

α(C)
2

log
[
(2π)d(detC)

]
+

log e

2
trC−1ΦC,φ. (5)

Here α(C) = αφ(C) > 0 and a positive-definite matrix ΦC

=ΦC,φ are given by

αφ(C) =
∫
Rd

φ(x)f No
C (x)dx , ΦC,φ =

∫
Rd

x xTφ(x)f No
C (x)dx . (6)

For φ(x) ≡ 1, we get back to the standard differential entropy:

h(f No
C ) =

1
2
log
[
(2π)d(detC)

]
+

d log e

2
. (7)
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It is well-known that C 7→ δ(C) := log detC is a concave

function of a (strictly) positive-definite matrix C:

δ(λ1C1 + λ2C2) ≥ λ1δ(C1) + λ2δ(C2);

equivalently, h(f No
λ1C1+λ2C2

) ≥ λ1h(f
No
C1

) + λ2h(f
No
C2

).
(8)

This is an example from a (famous) series of Ky Fan inequalities.

In the context of entropy, (8) is a simple corollary of the fact

that h(f ) := −
∫
f (x) log f (x)dx is maximised at f = f No

C .

But a similar property can be verified for the weighted entropy.

This immediately leads to a new inequality for positive-definite

matrices: under some assumptions about weight function φ,
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hw
φ (f

No
λ1C1+λ2C2

) ≥ λ1h
w
φ (f

No
C1

) + λ2h
w
φ (f

No
C2

). (9)

Inequality (9) becomes more explicit when the weight

function is φ(x) = exp
(
xTt

)
(parametrized by t ∈ Rd).

Namely:

hw
φ (f

No
C ) = h(f No

C ) exp
(1
2
tTCt

)
. (10)

Introduce the set S = S(C1,C2;λ1, λ2) ⊂ Rd :

S =
{
t ∈ Rd : F (1)(t) ≥ 0, and F (2)(t) ≤ 0

}
. (11)
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Here

F (1)(t) =
∑
i=1,2

λi exp
(1
2
tTCαt

)
− exp

(1
2
tTCt

)
and

F (2)(t) =

[ ∑
i=1,2

λi exp
(1
2
tTCi t

)
− exp

(1
2
tTCt

)]
× log

[
(2π)d(detC)

]
+
∑
i=1,2

λi exp
(1
2
tTCi t

)
tr
[
C−1Ci

]
− d exp

(1
2
tTCt

)
.
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Theorem 1. Given positive definite matrices C1, C2 and

λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1, set C = λ1C1 + λ2C2. Assume

that t ∈ S. Then

h(f No
C ) exp

(
1
2 t

TCt
)

−λ1h(f
No
C1

) exp
(

1
2 t

TC1t
)
− λ2h(f

No
C1

) exp
(

1
2 t

TC2t
)
≥ 0;

(12)

equality iff λ1λ2 = 0 or C1 = C2.

This is a previously unknown series of bounds of a Ky Fan type.

For t = 0 it becomes the standard Ky Fan bound (8).
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We recently produced a host of inequalities involving

determinants of positive-definite matrices; they all are proven

with the help of weighted entropies. See

Y. Suhov, S.Yasaei Sekeh. Simple inequalities for weighted

entropies. arXiv:1409.4102v3, 2014

Y. Suhov, S.Yasaei Sekeh, I.Stuhl. Weighted Gaussian entropy

and determinant inequalities. arXiv:1505.01437v1, 2015

My last example will be from financial engineering.

More precisely, I will use a background of betting.
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You are betting on results εn of subsequent random trials,

n = 1, 2, . . ..

Each εn produces a value xn, say, xn ∈ Rd . We

suppose that a random string εn1 =


ε1
...

εn

 has a joint PDF

fn(x
n
1). A conditional PDF fn(xn|xn−1

1 ) will be also used, with

fn(xn|xn−1
1 )fn−1(x

n−1
1 ) = fn(x

n
1),

∫
Rd

fn(xn|xn−1
1 )dxn = 1.
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Let us agree that if you stake $Cn on game n you win

$Cngn(xn) if the result is xn ∈ Rd . (So, you make a profit

when Cngn(xn) > 0 and incur a loss when Cngn(xn) < 0.)

Here gn are given real-valued functions xn ∈ Rd 7→ gn(xn) ∈ R.

We say that gn are return functions.
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Let Z0 > 0 be your initial capital. More generally, given n ≥ 1,

denote by Zn−1 > 0 your fortune after n − 1 trials and impose the

restriction that variable Cn = Cn(Z0; ε
n−1
1 ) depends on Z0 and

εn−1
1 but not on εn.

(One says that Cn is a previsible strategy.)

Then Zn−1 = Zn−1(Z0, ε
n−1
1 ). It also makes sense to require that

Cn ≥ 0. One also may demand that −Cngn(xn) ≤ Zn−1.

(In applications, this is required to guarantee the deposit.)

We have the recursion

Zn = Zn−1 + Cngn(εn) = Zn−1

(
1+

Cngn(εn)

Zn−1

)
(13)
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and wish to maximize ESN where

SN :=
N∑
j=1

φj(εj ; ε
j−1
1 ) log

Zj

Zj−1
. (14)

Here the weight function (WF) x j1 7→ φj(xj ; x
j−1
1 ) depends on x j

and the vector x j−1
1 =


x1
...

xj−1

. Quantity φj(xj ; x
j−1
1 ) represents a

‘sentimental’ value of outcome xn (given that it succeeds a

sequence x j−1
1 ) taken into account when one calculates SN .
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Value ESN is the weighted expected interest rate after N rounds of

investment.

When φ ≡ 1, the sum (14) becomes telescopic and equal to

log
ZN

Z0
, the standard interest rate. Recursion (13) suggests a

martingale-based approach.

We also consider a sequence of positive functions bn(xn), xn ∈ Rn,

figuring in Eqns (15) – (16) below. More precisely, we will use the

following conditions.
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∫
Rd

φn(xn; ε
n−1
1 )bn(xn)gn(xn)dxn = 0, (15)

and ∫
Rd

φn(xn; ε
n−1
1 )bn(xn)dxn

≤
∫
Rn

φn(xn; ε
n−1
1 )fn(xn|εn−1

1 )dµn(xn),
(16)

Next, define a RV αn = αn(ε
n−1
1 ) by

αn =

∫
Rn

φn(xn; ε
n−1
1 )fn(xn|εn−1

1 ) log
fn(xn|εn−1

1 )

bn(xn)
dxn. (17)
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Theorem 2. Given 1 < N ≤ ∞, assume conditions (15), (16) for

1 ≤ n < N. Then:

(A) For all previsible Cn such that 1+
Cng(εn)

Zn−1
> 0, sequence

Sn −An is a supermartingale, where An :=
n∑

j=1

αj . Consequently,

ESn ≤
n∑

j=1

Eαj .
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(B) Sequence Sn −An, 1 ≤ n < N, is a martingale for some

previsible Cn satisfying 0 ≤ Cn ≤ Zn−1 and 1+
Cngn(εn)

Zn−1
> 0

iff the following holds. There exists a function

xn−1
1 7→ Dn−1(x

n−1
1 ) ∈ [0, 1] with 1+ Dn(ε

n−1
1 )gn(εn) > 0

such that

fn(xn|xn−1
1 ) = gn(xn)bn(xn)Dn−1(x

n−1
1 ) + bn(xn). (18)

In this case

Cn(ε
n−1
1 ) = Dn−1(ε

n−1
1 )Zn−1(ε

n−1
1 ). (20)
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E.g., assume that trials εn are IID, and each trial produces one

of m > 1 outcomes E1,. . ., Em ∈ R with probabilities p1,. . .,

pm > 0. We also set the return function gn(Ei ) = Ei and use

uniform probabilities to emulate functions bn: bn(Ei ) =
1
m
.

Here if you stake $Cn on game n you win $CnEi if the result is

Ei . As above, let Zn−1 > 0 be the fortune after n − 1 trials

(Z0 > 0 is the initial capital). As before, let Fn = σ(Z0) and

Fn = σ(Z0, ε
n
1), n ≥ 1, and consider a sequence of RVs Cn

where Cn is Fn−1-measurable (a previsible strategy).

Recursion (13) becomes
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Zn = Zn−1 + Cnεn = Zn−1

(
1+

εnCn

Zn−1

)
.

We wish to maximize, in Cn, the weighted expected interest

rate ESN where

Sn :=
n∑

j=1

φ(εj) log
Zj

Zj−1
.

Here E 7→ φ(E ) ≥ 0 is a weight function (for simplicity

depending only upon a one-time outcome).
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Theorem 2 then takes the following form:

Theorem 3. Suppose that

∑
i

φ(Ei )Ei = 0 and
1
m

∑
i

φ(Ei ) ≤
∑
i

φ(Ei )pi .

Set:

α =
∑
i

φ(Ei )pi log (pim).

Then

(A) For all previsible Cn with 1+
εnCn

Zn−1
> 0, sequence Sn − αn

is a supermartingale; consequently, ESn ≤ nα.
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(B) Sn − αn is a martingale for a previsible Cn with

0 ≤ Cn ≤ Zn−1 and 1+
εnCn

Zn−1
> 0 iff D :=

mpi − 1
Ei

is a

non-negative number between 0 and 1 which does not depend

upon outcome Ei , and

Cn = DZn.
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In case m = 2, the above martingale strategy exists only if

E1 = −E2 and φ(E1) = φ(E2) (no weight preference). Assume

for definiteness that E1 > 0 and p1 ≥ 1/2. Then

D =
2p1 − 1

E1
=

1− 2p1

E2
, and the martingale strategy is

Cn =
Zn−1

E1
(2p1 − 1).

It means that you repeatedly bet the proportion
2p1 − 1

E1
of your current capital on outcome E1. See

Y. Suhov, I. Stuhl, M. Kelbert. Weight functions and

log-optimal investment portfolios. arXiv:1505.01417, 2015
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