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ODE’s and control systems ẋ(t) = d
dt x(t)

ẋ = f (x) (ODE )
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x
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x
0

f(x)
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ẋ = f (x , u(t)), u(t) ∈ U (control system)

ẋ ∈ F (x) = {f (t, u) ; u ∈ U} (differential inclusion)
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Example 1 - boat on a river

x(t) = position of a boat on a river

v(x) velocity of the water

M = maximum speed of the boat relative to the water

ẋ = f (x , u(t)) = v(x) + u(t) u ∈ U = {ω ∈ R2, |ω| ≤ M} (CS)

ẋ ∈ F (x) =
{

v(x) + ω ; |ω| ≤ M
}

(DI )
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Example 2 - cart on a rail

x(t) = position of the cart

y(t) = velocity of the cart

u(t) = force pushing or pulling the cart (control function)

m ẍ = u(t), m = mass of the cart

{
ẋ = y

ẏ = 1
mu(t)

u(t) ∈ [−1, 1]

0 x

y u
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Example 3 - fishery management

x(t) = amount of fish in a lake, at time t

M = maximum population supported by the habitat

u(t) = harvesting effort (control function)

ẋ = αx(M − x)− xu, u(t) ∈ [0, umax ]
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Example 4 - systems with scalar control entering linearly

ẋ = f (x) + g(x) u u ∈ [−1, 1]

ẋ ∈ F (x) =
{

f (x) + g(x) u ; u ∈ [−1, 1]
}
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Open-loop controls

If u = u(t) is assigned as a function of time, we say that u is an
open-loop control.

Theorem

Assume that the function f (x , u) is differentiable w.r.t. x. Then for every
(possibly discontinuous) control function u(t) the Cauchy problem

ẋ(t) = f (x(t), u(t)), x(t0) = x0

has a unique solution.

Alberto Bressan (Penn State) control theory 7 / 33



Feedback controls

If u = u(x) is assigned as a function of the state variable x , we say that
u is a closed-loop (or feedback) control.

Theorem

Assume that the function f (x , u) is differentiable w.r.t. both x and u, and
that the feedback control function u(x) is differentiable w.r.t. x.
Then the Cauchy problem

ẋ(t) = f (x(t), u(x)), x(t0) = x0

has a unique solution.
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Designing a control function

ẋ = f (x , u), u(t) ∈ U

Possible goals:

Reach a target in minimum time

Construct a feedback control function u = u(x) which stabilizes the
system at the origin.

Construct an open-loop control u(t) which is optimal for a given cost
criterion.
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Two strategies for crossing a river by boat
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Feedback stabilization

Problem: construct a feedback control u(x) ∈ U such that all trajectories
of the ODE

ẋ = f (x , u(x))

(which start sufficiently close to the origin) satisfy

asymptotic stability: lim
t→+∞

x(t) = 0
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Asymptotic stabilization by a feedback control

ẋ = f (x , u(x))

x = (x1, . . . , xn) , u = (u1, . . . , um) , f = (f1, . . . , fn)

Theorem

Assume that f (0, u(0)) = 0, so that x = 0 ∈ Rn is an equilibrium point.
This equilibrium is asymptotically stable if the n × n Jacobian matrix
A = (Aij)

Aij =

[
∂fi
∂xj

+
m∑

k=1

∂fi
∂uk

∂uk

∂xj

]
x=0

has all eigenvalues with strictly negative real part.
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Optimal control problems

ẋ = f (x , u), u(t) ∈ U, x(0) = x0 , t ∈ [0,T ]

x
0

F(x)

x

R(T)

R(T) = reachable set

at time   T

Goal: Choose a control u(t) ∈ U such that the corresponding trajectory
maximizes the payoff

J = ψ(x(T ))−
∫ T

0
L(x(t), u(t)) dt

= [terminal payoff]− [running cost]
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Existence of optimal controls (with no running cost)

Consider the problem

maximize: ψ(x(T ))

subject to: ẋ = f (x , u), x(0) = x0 , u(t) ∈ U.

Assume that for every x the set of possible velocities

F (x) = {f (x , u) ; u ∈ U}

is closed, bounded, and convex.

Than an optimal (open-loop) control u : [0,T ] 7→ U exists.
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Existence of optimal controls (with dynamics linear w.r.t. u)

Consider the problem

maximize: ψ(x(T ))−
∫ T

0
L(x(t), u(t)) dt

subject to: ẋ = f (x) + g(x)u, x(0) = x0 , u(t) ∈ [a, b].

Assume that the cost function L is convex in u, for every fixed x .

Than an optimal (open-loop) control u : [0,T ] 7→ U exists.
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Finding the optimal control

maximize: ψ(x(T ))

subject to: ẋ = f (x , u), x(0) = x0 , u(t) ∈ U

x (t)

 ψ = const.

R(T)

*

x
0

Let u∗(t) be an optimal control and let x∗(t) be the optimal trajectory.

Derive necessary conditions for their optimality.
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Preliminary: perturbed solutions of an ODE

ẋ(t) = g(t, x(t)) (ODE )

Let x∗(t) be a solution, and consider a family of perturbed solutions

xε(t) = x∗(t) + εv(t) + O(ε2)

x (t)

v(t)

v(  ) x (t)

v(T)

x (T)

x (  )τ*
ε

*

x (  )

ε

x (T)
ε

*

τ

τ

How does the “first order perturbation” v(t) evolve in time?
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An example

ẋ1 = x2 , ẋ2 = − x1 , T = π

1

x
2

xx(0) x(T)

x(t)

v(t)

x (t)
ε

0
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A linearized equation for the evolution of tangent vectors

ẋ(t) = g(t, x(t)) (ODE )

xε(t) = x∗(t) + εv(t) + O(ε2) (†)

Insert (†) in (ODE), and use a Taylor approximation:

ẋε(t) = g(t, xε(t))

ẋ∗(t) + εv̇(t) + O(ε2) = g
(

t, x∗(t) + εv(t) + O(ε2)
)

= g
(
t, x∗(t)

)
+
∂g

∂x
(t, x∗(t)) · εv(t) + O(ε2)

=⇒ v̇(t) = A(t)v(t), A(t) =
∂g

∂x
(t, x∗(t))
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The adjoint linear system

p = (p1, . . . , pn), v =

v1
...

vn

 , A(t) is an n × n matrix

Lemma

Let v(t) and p(t) be any solutions to the linear ODEs

v̇(t) = A(t)v(t), ṗ(t) = − p(t)A(t)

Then the product p(t)v(t) =
∑

i pivi is constant.

d

dt
(pv) = ṗv + pv̇ = (−pA)v + p(Av) = 0
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Deriving necessary conditions

maximize the terminal payoff: ψ(x(T ))

subject to: ẋ = f (x , u), x(0) = x0 , u(t) ∈ U.

u∗(t) = optimal control, x∗(t) = optimal trajectory.

x (t)

 ψ = const.

R(T)

*

x
0

No matter how we change the control u∗(·), the terminal payoff cannot be

increased.
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Needle variations

Choose an arbitrary time τ ∈ ]0,T ] and control value ω ∈ U.

needle variation: uε(t) =

{
ω if t ∈ [τ − ε, τ ],

u∗(t) otherwise.

perturbed trajectory: xε(t) =

{
x∗(t) if t ≤ τ − ε,

x∗(t) + εv(t) +O(ε2) if t ≥ τ

x ∆

ψε

τ−ε

ω

0 Tτ

u
ε

u* *

*x (  )τ

x (T)

x
0

v(  )τ

v(T)

ψ = constant
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Computing the perturbed trajectory

x ∆

ψε

τ−ε

ω

0 Tτ

u
ε

u* *

*x (  )τ

x (T)

x
0

v(  )τ

v(T)

ψ = constant

At time τ : xε(τ) = x∗(τ) + ε
[
f (x∗(τ), ω)− f (x∗(τ), u∗(τ))

]
+O(ε2)

On the interval t ∈ [τ,T ]: xε(t) = x∗(t) + εv(t) +O(ε2),

 v̇(t) = A(t)v(t),

v(τ) = f (x∗(τ), ω)− f (x∗(τ), u∗(τ)),
A(t) =

∂f

∂x
(x∗(t), u∗(t))
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A family of necessary conditions

x ∆

ψε

τ−ε

ω

0 Tτ

u
ε

u* *

*x (  )τ

x (T)

x
0

v(  )τ

v(T)

ψ = constant

u∗ is optimal =⇒ d

dε
ψ(xε(T ))

∣∣∣∣
ε=0

= ∇ψ(x∗(T )) · v(T ) ≤ 0
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Let the row vector p(t) be the solution to

ṗ(t) = − p(t)A(t), p(T ) = ∇ψ(x∗(T ))

A(t) =
∂f

∂x
(t, x∗(t))

Since v(t) satisfies v̇(t) = A(t)v(t), the product p(t)v(t) is constant in
time. Hence

p(τ)v(τ) = p(T )v(T ) = ∇ψ(x∗(T )) · v(T ) ≤ 0

For every τ ∈]0,T ] and ω ∈ U, we thus have

p(τ)v(τ) = p(τ)
[
f (x∗(τ), ω)− f (x∗(τ), u∗(τ))

]
≤ 0
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Geometric interpretation of the Pontryagin Maximum Principle

For every τ ∈]0,T ], the inequality

p(τ)
[
f (x∗(τ), ω)− f (x∗(τ), u∗(τ))

]
≤ 0 for all ω ∈ U

implies

p(τ) · ẋ∗(τ) = p(τ) · f
(
x∗(τ), u∗(τ)

)
= max

ω∈U

{
p(τ) · f

(
x∗(τ), ω

)}
(PMP)

For every time τ ∈ ]0,T ], the speed ẋ∗(τ) corresponding to the optimal control

u∗(τ) is the one maximizing the product with p(τ).

* τ

*

*
.

f(x ( ),  )ω

ψ = 

p(T) =   

const.

∆

x (  )τ

x (  )τ
x (T)

ψ

x
0

p(  )τ

*
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Statement of the Pontryagin Maximum Principle

maximize the terminal payoff: ψ(x(T ))

subject to: ẋ = f (x , u), x(0) = x0 , u(t) ∈ U.

Theorem

Let t 7→ u∗(t) be an optimal control and t 7→ x∗(t) be the corresponding optimal
trajectory.

Let the row vector t 7→ p(t) be the solution to the linear adjoint system

ṗ(t) = −p(t) A(t), Aij(t)
.

=
∂fi
∂xj

(
x∗(t), u∗(t)

)
with terminal condition p(T ) = ∇ψ

(
x∗(T )

)
.

Then, at every time τ ∈ [0,T ] where u∗(·) is continuous, one has

p(τ) · f
(
x∗(τ), u∗(τ)

)
= max

ω∈U

{
p(τ) · f

(
x∗(τ), ω

)}
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Computing the Optimal Control

STEP 1: solve the pointwise maximixation problem, obtaining the
optimal control u∗ as a function of p, x , i.e.

u∗(x , p) = argmax
ω∈U

{
p · f (x , ω)

}
(1)

STEP 2: solve the two-point boundary value problem{
ẋ = f

(
x , u∗(x , p)

)
ṗ = −p · ∂

∂x f
(
x , u∗(x , p)

) {
x(0) = x0

p(T ) = ∇ψ
(
x(T )

) (2)

• In general, the function u∗ = u∗(p, x) in (1) is highly nonlinear. It may be
multivalued or discontinuous.

• The two-point boundary value problem (2) can be solved by a shooting method:
Guess an initial value p(0) = p0 and solve the corresponding Cauchy problem. Try
to adjust the value of p0 so that the terminal values x(T ), p(T ) satisfy the given
conditions.
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Example: a linear pendulum

u

q

q(t) = position of a linearized pendulum, controlled by an external force
with magnitude u(t) ∈ [−1, 1].

q̈(t) + q(t) = u(t), q(0) = q̇(0) = 0, u(t) ∈ [−1, 1]

We wish to maximize the terminal displacement q(T ).
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q̈(t) + q(t) = u(t), q(0) = q̇(0) = 0, u(t) ∈ [−1, 1]

Equivalent control system: x1 = q, x2 = q̇

{
ẋ1 = f1(x1, x2, u) = x2
ẋ2 = f2(x1, x2, u) = u − x1

{
x1(0) = 0
x2(0) = 0

Goal: maximize ψ(x(T ))
.

= x1(T )

Let u∗(t) be an optimal control, and let x∗(t) be the optimal trajectory.

The adjoint vector p = (p1, p2) is found by solving the linear system of ODEs

ṗ = − p(t)A(t), p(T ) = ∇ψ(x∗(T ))

Aij(t) =
∂fi
∂xj

, A(t) =

(
0 1
−1 0

)
ψ(x1, x2) = x1, (p1(T ), p2(T )) =

(
∂ψ

∂x1
,
∂ψ

∂x2

)
x=x∗(T )

= (1, 0)
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(ṗ1, ṗ2) = − (p1, p2)

(
0 1
−1 0

)
, (p1, p2)(T ) = (1, 0) (3)

In this special case, we can explicitly solve the adjoint equation (3) without
needing to know x∗, u∗, namely

(p1, p2)(t) =
(
cos(T − t), sin(T − t)

)
(4)

{
ẋ1 = f1(x1, x2) = x2
ẋ2 = f2(x1, x2) = u − x1

Given p = (p1, p2), the optimal control is

u∗(x , p) = arg max
ω∈[−1,1]

{
p·f (x , ω)

}
= arg max

ω∈[−1,1]

{
p1x2+p2(−x1+ω)

}
= sign(p2)

By (4), the optimal control is

u∗(t) = sign
(
p2(t)

)
= sign

(
sin(T − t)

)
t ∈ [0,T ]
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p = (p ,p )
1 2

u=1

u= −1

x = q

x = q
1

2

0 1 2−1

.

p2(t) > 0 =⇒ u∗(t) = 1
p2(t) < 0 =⇒ u∗(t) = −1
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