Control Theory: a Brief Tutorial

Alberto Bressan

Department of Mathematics, Penn State University
bressan@math.psu.edu

ODE's and control systems

$$
\begin{equation*}
\dot{x}=f(x) \tag{ODE}
\end{equation*}
$$

$\dot{x} \in F(x)=\{f(t, u) ; u \in U\}$
(differential inclusion)

Example 1 - boat on a river

$x(t)=$ position of a boat on a river
$v(x)$ velocity of the water
$M=$ maximum speed of the boat relative to the water

$$
\begin{equation*}
\dot{x}=f(x, u(t))=v(x)+u(t) \quad u \in U=\left\{\omega \in \mathbb{R}^{2},|\omega| \leq M\right\} \tag{CS}
\end{equation*}
$$

$$
\begin{equation*}
\dot{x} \in F(x)=\{v(x)+\omega ; \quad|\omega| \leq M\} \tag{DI}
\end{equation*}
$$

Example 2 - cart on a rail

$x(t)=$ position of the cart
$y(t)=$ velocity of the cart
$u(t)=$ force pushing or pulling the cart (control function)

$$
\begin{array}{ll}
m \ddot{x}=u(t), & m=\text { mass of the cart } \\
\begin{cases}\dot{x}=y & u(t) \in[-1,1] \\
\dot{y}=\frac{1}{m} u(t) & \end{cases}
\end{array}
$$

Example 3 - fishery management

$x(t)=$ amount of fish in a lake, at time t
$M=$ maximum population supported by the habitat
$u(t)=$ harvesting effort (control function)

$$
\dot{x}=\alpha x(M-x)-x u, \quad u(t) \in\left[0, u^{\max }\right]
$$

Example 4 - systems with scalar control entering linearly

$$
\dot{x}=f(x)+g(x) u \quad u \in[-1,1]
$$

$$
\dot{x} \in F(x)=\{f(x)+g(x) u ; \quad u \in[-1,1]\}
$$

Open-loop controls

If $u=u(t)$ is assigned as a function of time, we say that u is an open-loop control.

Theorem

Assume that the function $f(x, u)$ is differentiable w.r.t. x. Then for every (possibly discontinuous) control function $u(t)$ the Cauchy problem

$$
\dot{x}(t)=f(x(t), u(t)), \quad x\left(t_{0}\right)=x_{0}
$$

has a unique solution.

Feedback controls

If $u=u(x)$ is assigned as a function of the state variable x, we say that u is a closed-loop (or feedback) control.

Theorem

Assume that the function $f(x, u)$ is differentiable w.r.t. both x and u, and that the feedback control function $u(x)$ is differentiable w.r.t. x.
Then the Cauchy problem

$$
\dot{x}(t)=f(x(t), u(x)), \quad x\left(t_{0}\right)=x_{0}
$$

has a unique solution.

Designing a control function

$$
\dot{x}=f(x, u), \quad u(t) \in U
$$

Possible goals:

- Reach a target in minimum time
- Construct a feedback control function $u=u(x)$ which stabilizes the system at the origin.
- Construct an open-loop control $u(t)$ which is optimal for a given cost criterion.

Two strategies for crossing a river by boat

Feedback stabilization

Problem: construct a feedback control $u(x) \in U$ such that all trajectories of the ODE

$$
\dot{x}=f(x, u(x))
$$

(which start sufficiently close to the origin) satisfy

$$
\text { asymptotic stability: } \quad \lim _{t \rightarrow+\infty} x(t)=0
$$

Asymptotic stabilization by a feedback control

$$
\begin{gathered}
\dot{x}=f(x, u(x)) \\
x=\left(x_{1}, \ldots, x_{n}\right), \quad u=\left(u_{1}, \ldots, u_{m}\right), \quad f=\left(f_{1}, \ldots, f_{n}\right)
\end{gathered}
$$

Theorem

Assume that $f(0, u(0))=0$, so that $x=0 \in \mathbb{R}^{n}$ is an equilibrium point. This equilibrium is asymptotically stable if the $n \times n$ Jacobian matrix $A=\left(A_{i j}\right)$

$$
A_{i j}=\left[\frac{\partial f_{i}}{\partial x_{j}}+\sum_{k=1}^{m} \frac{\partial f_{i}}{\partial u_{k}} \frac{\partial u_{k}}{\partial x_{j}}\right]_{x=0}
$$

has all eigenvalues with strictly negative real part.

Optimal control problems

$$
\dot{x}=f(x, u), \quad u(t) \in U, \quad x(0)=x_{0}, \quad t \in[0, T]
$$

$$
\mathrm{R}(\mathrm{~T})=\text { reachable set }
$$ at time T

Goal: Choose a control $u(t) \in U$ such that the corresponding trajectory maximizes the payoff

$$
\begin{aligned}
J & =\psi(x(T))-\int_{0}^{T} L(x(t), u(t)) d t \\
& =[\text { terminal payoff }]-[\text { running cost }]
\end{aligned}
$$

Existence of optimal controls (with no running cost)

Consider the problem

$$
\begin{array}{lll}
& \text { maximize: } & \psi(x(T)) \\
\text { subject to: } \quad \dot{x}=f(x, u), & x(0)=x_{0}, \quad u(t) \in U .
\end{array}
$$

Assume that for every x the set of possible velocities

$$
F(x)=\{f(x, u) ; \quad u \in U\}
$$

is closed, bounded, and convex.
Than an optimal (open-loop) control $u:[0, T] \mapsto U$ exists.

Existence of optimal controls (with dynamics linear w.r.t. u)

Consider the problem

$$
\text { maximize: } \quad \psi(x(T))-\int_{0}^{T} L(x(t), u(t)) d t
$$

subject to: $\quad \dot{x}=f(x)+g(x) u, \quad x(0)=x_{0}, \quad u(t) \in[a, b]$.

Assume that the cost function L is convex in u, for every fixed x.
Than an optimal (open-loop) control $u:[0, T] \mapsto U$ exists.

Finding the optimal control

$$
\text { maximize: } \quad \psi(x(T))
$$

$$
\text { subject to: } \quad \dot{x}=f(x, u), \quad x(0)=x_{0}, \quad u(t) \in U
$$

Let $u^{*}(t)$ be an optimal control and let $x^{*}(t)$ be the optimal trajectory. Derive necessary conditions for their optimality.

Preliminary: perturbed solutions of an ODE

$$
\begin{equation*}
\dot{x}(t)=g(t, x(t)) \tag{ODE}
\end{equation*}
$$

Let $x^{*}(t)$ be a solution, and consider a family of perturbed solutions

$$
x_{\varepsilon}(t)=x^{*}(t)+\varepsilon v(t)+O\left(\varepsilon^{2}\right)
$$

How does the "first order perturbation" $v(t)$ evolve in time?

An example

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}, \quad T=\pi
$$

A linearized equation for the evolution of tangent vectors

$$
\begin{gather*}
\dot{x}(t)=g(t, x(t)) \tag{ODE}\\
x_{\varepsilon}(t)=x^{*}(t)+\varepsilon v(t)+O\left(\varepsilon^{2}\right)
\end{gather*}
$$

Insert (\dagger) in (ODE), and use a Taylor approximation:

$$
\begin{aligned}
& \dot{x}_{\varepsilon}(t)=g\left(t, x_{\varepsilon}(t)\right) \\
& \dot{x}^{*}(t)+\varepsilon \dot{v}(t)+O\left(\varepsilon^{2}\right)=g\left(t, x^{*}(t)+\varepsilon v(t)+O\left(\varepsilon^{2}\right)\right) \\
&=g\left(t, x^{*}(t)\right)+\frac{\partial g}{\partial x}\left(t, x^{*}(t)\right) \cdot \varepsilon v(t)+O\left(\varepsilon^{2}\right) \\
& \Longrightarrow \quad \dot{v}(t)=A(t) v(t), \quad A(t)=\frac{\partial g}{\partial x}\left(t, x^{*}(t)\right)
\end{aligned}
$$

The adjoint linear system

$$
p=\left(p_{1}, \ldots, p_{n}\right), \quad v=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right),
$$

$A(t)$ is an $n \times n$ matrix

Lemma

Let $v(t)$ and $p(t)$ be any solutions to the linear ODEs

$$
\dot{v}(t)=A(t) v(t), \quad \dot{p}(t)=-p(t) A(t)
$$

Then the product $p(t) v(t)=\sum_{i} p_{i} v_{i}$ is constant.

$$
\frac{d}{d t}(p v)=\dot{p} v+p \dot{v}=(-p A) v+p(A v)=0
$$

Deriving necessary conditions

maximize the terminal payoff: $\quad \psi(x(T))$

$$
\text { subject to: } \quad \dot{x}=f(x, u), \quad x(0)=x_{0}, \quad u(t) \in U .
$$

$u^{*}(t)=$ optimal control, $\quad x^{*}(t)=$ optimal trajectory.

No matter how we change the control $u^{*}(\cdot)$, the terminal payoff cannot be increased.

Needle variations

Choose an arbitrary time $\tau \in] 0, T]$ and control value $\omega \in U$.
needle variation: $\quad u_{\varepsilon}(t)=\left\{\begin{array}{cl}\omega & \text { if } t \in[\tau-\varepsilon, \tau], \\ u^{*}(t) & \text { otherwise. }\end{array}\right.$
perturbed trajectory: $\quad x_{\varepsilon}(t)=\left\{\begin{array}{cl}x^{*}(t) & \text { if } t \leq \tau-\varepsilon, \\ x^{*}(t)+\varepsilon v(t)+\mathcal{O}\left(\varepsilon^{2}\right) & \text { if } t \geq \tau\end{array}\right.$

Computing the perturbed trajectory

At time $\tau: \quad x_{\varepsilon}(\tau)=x^{*}(\tau)+\varepsilon\left[f\left(x^{*}(\tau), \omega\right)-f\left(x^{*}(\tau), u^{*}(\tau)\right)\right]+\mathcal{O}\left(\varepsilon^{2}\right)$
On the interval $t \in[\tau, T]: \quad x_{\varepsilon}(t)=x^{*}(t)+\varepsilon v(t)+\mathcal{O}\left(\varepsilon^{2}\right)$,

$$
\left\{\begin{aligned}
\dot{v}(t) & =A(t) v(t) \\
v(\tau) & =f\left(x^{*}(\tau), \omega\right)-f\left(x^{*}(\tau), u^{*}(\tau)\right)
\end{aligned}\right.
$$

$$
A(t)=\frac{\partial f}{\partial x}\left(x^{*}(t), u^{*}(t)\right)
$$

A family of necessary conditions

$$
\omega
$$

Let the row vector $p(t)$ be the solution to

$$
\begin{gathered}
\dot{p}(t)=-p(t) A(t), \quad p(T)=\nabla \psi\left(x^{*}(T)\right) \\
A(t)=\frac{\partial f}{\partial x}\left(t, x^{*}(t)\right)
\end{gathered}
$$

Since $v(t)$ satisfies $\dot{v}(t)=A(t) v(t)$, the product $p(t) v(t)$ is constant in time. Hence

$$
p(\tau) v(\tau)=p(T) v(T)=\nabla \psi\left(x^{*}(T)\right) \cdot v(T) \leq 0
$$

For every $\tau \in] 0, T]$ and $\omega \in U$, we thus have

$$
p(\tau) v(\tau)=p(\tau)\left[f\left(x^{*}(\tau), \omega\right)-f\left(x^{*}(\tau), u^{*}(\tau)\right)\right] \leq 0
$$

Geometric interpretation of the Pontryagin Maximum Principle

For every $\tau \in] 0, T]$, the inequality

$$
p(\tau)\left[f\left(x^{*}(\tau), \omega\right)-f\left(x^{*}(\tau), u^{*}(\tau)\right)\right] \leq 0 \quad \text { for all } \omega \in U
$$

implies

$$
\begin{equation*}
p(\tau) \cdot \dot{x}^{*}(\tau)=p(\tau) \cdot f\left(x^{*}(\tau), u^{*}(\tau)\right)=\max _{\omega \in U}\left\{p(\tau) \cdot f\left(x^{*}(\tau), \omega\right)\right\} \tag{PMP}
\end{equation*}
$$

For every time $\tau \in] 0, T]$, the speed $\dot{x}^{*}(\tau)$ corresponding to the optimal control $u^{*}(\tau)$ is the one maximizing the product with $p(\tau)$.

$$
\psi=\text { const }
$$

Statement of the Pontryagin Maximum Principle

maximize the terminal payoff: $\quad \psi(x(T))$ subject to: $\quad \dot{x}=f(x, u), \quad x(0)=x_{0}, \quad u(t) \in U$.

Theorem

Let $t \mapsto u^{*}(t)$ be an optimal control and $t \mapsto x^{*}(t)$ be the corresponding optimal trajectory.

Let the row vector $t \mapsto p(t)$ be the solution to the linear adjoint system

$$
\dot{p}(t)=-p(t) A(t), \quad A_{i j}(t) \doteq \frac{\partial f_{i}}{\partial x_{j}}\left(x^{*}(t), u^{*}(t)\right)
$$

with terminal condition $p(T)=\nabla \psi\left(x^{*}(T)\right)$.
Then, at every time $\tau \in[0, T]$ where $u^{*}(\cdot)$ is continuous, one has

$$
p(\tau) \cdot f\left(x^{*}(\tau), u^{*}(\tau)\right)=\max _{\omega \in U}\left\{p(\tau) \cdot f\left(x^{*}(\tau), \omega\right)\right\}
$$

Computing the Optimal Control

STEP 1: solve the pointwise maximixation problem, obtaining the optimal control u^{*} as a function of p, x, i.e.

$$
\begin{equation*}
u^{*}(x, p)=\underset{\omega \in U}{\operatorname{argmax}}\{p \cdot f(x, \omega)\} \tag{1}
\end{equation*}
$$

STEP 2: solve the two-point boundary value problem

$$
\left\{\begin{array} { r l }
{ \dot { x } } & { = f (x , u ^ { * } (x , p)) } \tag{2}\\
{ \dot { p } } & { = - p \cdot \frac { \partial } { \partial x } f (x , u ^ { * } (x , p)) }
\end{array} \quad \left\{\begin{array}{rl}
x(0) & =x_{0} \\
p(T) & =\nabla \psi(x(T))
\end{array}\right.\right.
$$

- In general, the function $u^{*}=u^{*}(p, x)$ in (1) is highly nonlinear. It may be multivalued or discontinuous.
- The two-point boundary value problem (2) can be solved by a shooting method: Guess an initial value $p(0)=p_{0}$ and solve the corresponding Cauchy problem. Try to adjust the value of p_{0} so that the terminal values $x(T), p(T)$ satisfy the given conditions.

Example: a linear pendulum

$q(t)=$ position of a linearized pendulum, controlled by an external force with magnitude $u(t) \in[-1,1]$.

$$
\ddot{q}(t)+q(t)=u(t), \quad q(0)=\dot{q}(0)=0, \quad u(t) \in[-1,1]
$$

We wish to maximize the terminal displacement $q(T)$.

$$
\ddot{q}(t)+q(t)=u(t), \quad q(0)=\dot{q}(0)=0, \quad u(t) \in[-1,1]
$$

Equivalent control system: $x_{1}=q, x_{2}=\dot{q}$

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = f _ { 1 } (x _ { 1 } , x _ { 2 } , u) = x _ { 2 } } \\
{ \dot { x } _ { 2 } = f _ { 2 } (x _ { 1 } , x _ { 2 } , u) = u - x _ { 1 } }
\end{array} \quad \left\{\begin{array}{l}
x_{1}(0)=0 \\
x_{2}(0)=0
\end{array}\right.\right.
$$

Goal: maximize $\psi(x(T)) \doteq x_{1}(T)$

Let $u^{*}(t)$ be an optimal control, and let $x^{*}(t)$ be the optimal trajectory.
The adjoint vector $p=\left(p_{1}, p_{2}\right)$ is found by solving the linear system of ODEs

$$
\begin{array}{cc}
\dot{p}=-p(t) A(t), & p(T)=\nabla \psi\left(x^{*}(T)\right) \\
A_{i j}(t)=\frac{\partial f_{i}}{\partial x_{j}}, & A(t)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\psi\left(x_{1}, x_{2}\right)=x_{1}, & \left(p_{1}(T), p_{2}(T)\right)=\left(\frac{\partial \psi}{\partial x_{1}}, \frac{\partial \psi}{\partial x_{2}}\right)_{\substack{x=x^{*}(T)}} \tag{1,0}
\end{array}
$$

$$
\left(\dot{p}_{1}, \dot{p}_{2}\right)=-\left(p_{1}, p_{2}\right)\left(\begin{array}{cc}
0 & 1 \tag{3}\\
-1 & 0
\end{array}\right), \quad\left(p_{1}, p_{2}\right)(T)=(1,0)
$$

In this special case, we can explicitly solve the adjoint equation (3) without needing to know x^{*}, u^{*}, namely

$$
\begin{aligned}
&\left(p_{1}, p_{2}\right)(t)=(\cos (T-t), \quad \sin (T-t)) \\
& \begin{cases}\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}\right)= \\
\dot{x}_{2} & =x_{2}\left(x_{1}, x_{2}\right)=u-x_{1}\end{cases}
\end{aligned}
$$

Given $p=\left(p_{1}, p_{2}\right)$, the optimal control is
$u^{*}(x, p)=\arg \max _{\omega \in[-1,1]}\{p \cdot f(x, \omega)\}=\arg \max _{\omega \in[-1,1]}\left\{p_{1} x_{2}+p_{2}\left(-x_{1}+\omega\right)\right\}=\operatorname{sign}\left(p_{2}\right)$

By (4), the optimal control is

$$
u^{*}(t)=\operatorname{sign}\left(p_{2}(t)\right)=\operatorname{sign}(\sin (T-t)) \quad t \in[0, T]
$$

$$
\begin{array}{lll}
p_{2}(t)>0 & \Longrightarrow & u^{*}(t)=1 \\
p_{2}(t)<0 & \Longrightarrow & u^{*}(t)=-1
\end{array}
$$

References

- A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Series in Applied Mathematics, Springfield Mo. 2007.
- L. Cesari, Optimization - Theory and Applications, Springer, 1983.
- W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.
- S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models Chapman and Hall/CRC, 2007.

