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introduction to non-cooperative games: solution concepts

differential games in continuous time and economic models

a game theoretical model of debt and bankruptcy
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Optimal decision problem

maximize: Φ(x , y)
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Φ = constant

The choice (x∗, y∗) ∈ R2 yields the maximum payoff
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A game for two players

Player A wishes to maximize his payoff ΦA(a, b)

Player B wishes to maximize his payoff ΦB(a, b)
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Player A chooses the value of a ∈ A

Player B chooses the value of b ∈ B
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A cooperative solution

C

= constant

Φ = constant
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maximize the sum of payoffs ΦA(a, b) + ΦB(a, b)

split the total payoff fairly among the two players (how ???)
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The best reply map

If Player A adopts the strategy a, the set of best replies for Player B is

RB(a) =
{

b ; ΦB(a, b) = max
s∈B

ΦB(a, s)
}

If Player B adopts the strategy b, the set of best replies for Player A is

RA(b) =
{

a ; ΦA(a, b) = max
s∈A

ΦA(s, b)
}
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Nash equilibrium solutions

A couple of strategies (a∗, b∗) is a Nash equilibrium if

a∗ ∈ RA(b∗) and b∗ ∈ RB(a∗)

Φ = constant
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Antoin Augustin Cournot (1838)
John Nash (1950)
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Existence of Nash equilibria

Theorem. Assume

Sets of available strategies for the two players: A,B ⊂ Rn are compact and
convex

Payoff functions: ΦA,ΦB : A× B 7→ R are continuous

For each a ∈ A, the set of best replies RB(a) ⊂ B is convex

For each b ∈ B, the set of best replies RA(b) ⊂ A is convex

Then the game admits at least one Nash equilibrium.

Proof. If the best reply maps are single valued, the map

(a, b) 7→ (RA(b), RB(a))

is a continuous map from the compact convex set A× B into itself.
By Brouwer’s fixed theorem, it has a fixed point (a∗, b∗).

If RA,RB are convex-valued, by Kakutani’s fixed point theorem there exists

(a∗, b∗) ∈ (RA(b∗), RB(a∗))
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One-dimensional version of Brouwer’s and Kakutani’s
theorems
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x  = f(x  ) x    F(x  )

∋* * * *

0 x

Brouwer 1910 Kakutani 1941  no fixed point

Luitzen Egbertus Jan Brouwer (1910)
Shizuo Kakutani (1941)
Arrigo Cellina (1969)
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Stackelberg equilibrium

Player A (the leader) announces his strategy a ∈ A in advance

Player B (the follower) adopts his best reply: b ∈ RB(a) ⊆ B

What is the best strategy for the leader? maxa∈A ΦA(a,RB(a))
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A couple of strategies (a∗, b∗) is a Stackelberg equilibrium if b∗ ∈ RB(a∗) and

ΦA(a∗, b∗) ≥ ΦA(a, b) for all a ∈ A, b ∈ RB(a)
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Game theoretical models in Economics and Finance

Sellers (choosing prices charged) vs. buyers (choosing quantities bought)

Companies competing for market share (choosing production level, prices,
amount spent on research & development or advertising)

Auctions, bidding games

Economic growth. Leading player: central bank (choosing prime rate)
followers: private companies (choosing investment levels)

Debt management. Lenders (choosing interest rate) vs. borrower (choosing
repayment strategy)

. . .
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Differential games in finite time horizon

x(t) ∈ Rn = state of the system

Dynamics: ẋ(t) = f (x(t), u1(t), u2(t)), x(t0) = x0

u1(·), u2(·) = controls implemented by the two players

Goal of i-th player:

maximize: Ji
.

= ψi

(
x(T )

)
−
∫ T

t0

Li

(
x(t), u1(t), u2(t)

)
dt

= [terminal payoff] - [running cost]
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Differential games in infinite time horizon

Dynamics: ẋ = f (x , u1, u2), x(0) = x0

Goal of i-th player:

maximize: Ji
.

=

∫ +∞

0
e−γt Ψi

(
x(t), u1(t), u2(t)

)
dt

(running payoff, exponentially discounted in time)
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Example 1: an advertising game

Two companies, competing for market share

state variable: x(t) ∈ [0, 1] = market share of company 1, at time t

ẋ = (1− x) u1 − x u2

controls: u1, u2 = advertising rates

payoffs: Ji = N xi (T ) pi −
∫ T

0

ciui (t) dt i = 1, 2

N = expected number of items purchased by consumers

pi = profit made by player i on each sale

ci = advertising cost

xi = market share of player i (x1 = x , x2 = 1− x)
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Example 2: harvesting of marine resources

x(t) = amount of fish in a lake, at time t

dynamics: ẋ = αx(M − x)− xu1 − xu2

controls: u1, u2 = harvesting efforts by the two players

payoffs: Ji =

∫ +∞

0
e−γt (p xui − ciui ) dt

p = selling price of fish

ci = harvesting cost
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Example 3: a producer vs. consumer game

State variables:

{
p = price
q = size of the inventory

Controls:

{
a(t) = production rate
b(t) = consumption rate

The system evolves in time according to

{
ṗ = p ln(q0/q)
q̇ = a− b

Here q0 is an “appropriate” inventory level

Payoffs:


Jproducer .

=

∫ +∞

0

e−γt
[
p(t) · b(t)− c

(
a(t)

)]
dt

Jconsumer .
=

∫ +∞

0

e−γt
[
φ(b(t))− p(t)b(t)

]
dt

c(a) = production cost, φ(b)= utility to the consumer
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Solution concepts

No outcome can be optimal simultaneously for all players

Different outcomes may arise, depending on

information available to the players

their ability and willingness to cooperate
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Nash equilibria (in infinite time horizon)

Seek: feedback strategies: u∗1 (x), u∗2 (x) with the following properties

Given the strategy u2 = u∗2 (x) adopted by the second player,
for every initial data x(0) = y , the assignment u1 = u∗1 (x) provides a
solution to the optimal control problem for the first player:

max
u1(·)

∫ ∞
0

e−γt Ψ1(x , u1, u
∗
2 (x)) dt

subject to
ẋ = f (x , u1, u

∗
2 (x)), x(0) = y

Similarly, given the strategy u1 = u∗1 (x) adopted by the first player, the
feedback control u2 = u∗2 (x) provides a solution to the optimal control
problem for the second player.
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Solving an optimal control problem by PDE methods

V (y) = inf
u(·)

∫ +∞

0
e−γt L(x(t), u(t)) dt

subject to:

ẋ(t) = f (x(t), u(t)) x(0) = y u(t) ∈ U

V (y) = minimum cost, if the system is initially at y

Alberto Bressan (Penn State) Noncooperative Games 19 / 27



A PDE for the value function (by Bellman’s dynamic programming)

y = x(0)

x(t)

εy +   f(y,   )ω

If we use the constant control u(t) = ω for t ∈ [0, ε]
then we play optimally for t ∈ [ε,∞[ , the total cost is

Jε,ω =

(∫ ε

0

+

∫ +∞

ε

)
e−γtL(x(t), u(t)) dt

= ε L(y , ω) + e−γε V
(

y + εf (y , ω)
)

+ o(ε)

= ε L(y , ω) + (1− γε)V (y) +∇V (y) · εf (y , ω) + o(ε)

≥ V (y)

Minimize w.r.t. ω:

V (y) = V (y)− γεV (y) + ε · min
ω∈U

{
L(y , ω) +∇V (y) · f (y , ω)

}
+ o(ε)
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The Hamilton-Jacobi PDE for the value function

V (y) = V (y)− γεV (y) + ε · min
ω∈U

{
L(y , ω) +∇V (y) · f (y , ω)

}
+ o(ε)

Letting ε→ 0 we obtain

γV (y) = min
ω∈U

{
L(y , ω) +∇V (y) · f (y , ω)

}
.

= H(y ,∇V (y))

If V (·) is known, the optimal feedback control can be recovered by

u∗(y) = argmin
ω∈U

{
L(y , ω) +∇V (y) · f (y , ω)

}
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An example

minimize:

∫ ∞
0

e−γt
(
φ(x(t)) +

u2(t)

2

)
dt

subject to: ẋ = f (x) + g(x) u, x(0) = y , u(t) ∈ R

The value function V (y) = minimum cost starting at y satisfies the PDE

γV (x) = φ(x) +∇V (x) · f (x)− 1
2 (∇V (x) · g(x))2
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Finding the optimal feedback control

ẋ = f (x) + g(x) u

V(x)

V = const.
x

g(x)

∆

If V (·) is known, the optimal control can be recovered by

u∗(x) = argmin
u∈R

{
∇V (x) · g(x) u +

u2

2

}
= −∇V (x) · g(x)
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Solving a differential game by PDE methods

Dynamics: ẋ = f (x) + g1(x)u1 + g2(x)u2

Player i seeks to minimize: Ji =

∫ ∞
0

e−γt
(
φi (x(t)) +

u2
i (t)

2

)
dt

The value functions V1,V2 for the two players satisfy the system of H-J equations γV1 = (f · ∇V1)− 1
2 (g1 · ∇V1)2 − (g2 · ∇V1)(g2 · ∇V2) + φ1

γV2 = (f · ∇V2)− 1
2 (g2 · ∇V2)2 − (g1 · ∇V1)(g1 · ∇V2) + φ2

Optimal feedback controls: u∗i (x) = −∇Vi (x) · gi (x) i = 1, 2

highly nonlinear, implicit !
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Linear - Quadratic games

Assume that the dynamics is linear:

ẋ = (Ax + b0) + b1u1 + b2u2 , x(0) = y

and the cost functions are quadratic:

Ji =

∫ +∞

0

e−γt
(

ai · x + xTPix +
u2
i

2

)
dt

Then the system of PDEs has a special solution of the form

Vi (x) = αi + βi · x + xTΓix i = 1, 2 (∗)

optimal controls: u∗i (x) = − (βi + 2xTΓi ) · bi

To find this solution, it suffices to

determine the coefficients αi , βi , Γi by solving a system of algebraic equations
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Validity of linear-quadratic approximations ?

Assume the dynamics is almost linear

ẋ = f0(x)+g1(x)u1+g2(x)u2 ≈ (Ax +b0)+b1u1+b2u2 , x(0) = y

and the cost functions are almost quadratic

Ji =

∫ +∞

0
e−γt

(
φi (x) +

u2
i

2

)
dt ≈

∫ +∞

0
e−γt

(
ai · x + xTPix +

u2
i

2

)
dt

Is it true that the nonlinear game has a feedback solution close to the
linear-quadratic game?
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