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@ introduction to non-cooperative games: solution concepts

o differential games in continuous time and economic models

@ a game theoretical model of debt and bankruptcy
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Optimal decision problem

maximize: P(x,y)

& = constant

The choice (x*, y*) € R? yields the maximum payoff
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A game for two players

@ Player A wishes to maximize his payoff ®*(a, b)

@ Player B wishes to maximize his payoff ®&(a, b)

A
& = constant

¥/

KEERRRS O

B
&P = constant

al a,

@ Player A chooses the value of a € A

@ Player B chooses the value of b € B
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A cooperative solution

A
& = constant

B
&P = constant

@ maximize the sum of payoffs ®4(a, b) + ®&(a, b)

@ split the total payoff fairly among the two players  (how ?777)
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The best reply map

If Player A adopts the strategy a, the set of best replies for Player B is
RB(a) = {b; ®B(a, b) = max dB(a, s)}
seB

If Player B adopts the strategy b, the set of best replies for Player A is
RA(b) = {a; d4(a, b) = maz\<¢A(s, b)}
se

A
@ = constant B
& = constant

Ria

L

Rb) a A
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Nash equilibrium solutions

A couple of strategies (a*, b*) is a Nash equilibrium if
a* € RA(bY) and b* € RB(a")

A
= constant B
4 &= constant

B

Antoin Augustin Cournot (1838)
John Nash (1950)
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Existence of Nash equilibria

Theorem. Assume

@ Sets of available strategies for the two players: A, B C R" are compact and
convex

@ Payoff functions: ®A,®8 : A x B+ R are continuous
@ For each a € A, the set of best replies RE(a) C B is convex

@ For each b € B, the set of best replies RA(b) C A is convex

Then the game admits at least one Nash equilibrium.

Proof. If the best reply maps are single valued, the map
(a,b) = (R(b), R%(a))

is a continuous map from the compact convex set A x B into itself.
By Brouwer's fixed theorem, it has a fixed point (a*, b*).

If RA, RE are convex-valued, by Kakutani's fixed point theorem there exists
(a*,b") € (RY(b"), R®(a"))
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One-dimensional version of Brouwer's and Kakutani's

theorems

Brouwer 1910 Kakutani 1941

no fixed point
x*=f(x*) x*e F(x*)

Luitzen Egbertus Jan Brouwer (1910)
Shizuo Kakutani (1941)
Arrigo Cellina (1969)
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Stackelberg equilibrium

@ Player A (the leader) announces his strategy a € A in advance
@ Player B (the follower) adopts his best reply: b € R®(a) C B

What is the best strategy for the leader? maxaea ®*(a, RE(a))
q)A: constant
B &P= constant
0
" S
a* a A

A couple of strategies (a*, b*) is a Stackelberg equilibrium if b* € R®(a*) and
oA(a*,b*) > d*a,b) forall ac A, be RP(a)
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@ Sellers (choosing prices charged) vs. buyers (choosing quantities bought)

@ Companies competing for market share (choosing production level, prices,
amount spent on research & development or advertising)

@ Auctions, bidding games

@ Economic growth. Leading player: central bank (choosing prime rate)
followers: private companies (choosing investment levels)

@ Debt management. Lenders (choosing interest rate) vs. borrower (choosing
repayment strategy)
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Differential games in finite time horizon

x(t) € R" = state of the system

Dynamics: x(t) = f(x(t), u1(t), ua(t)), x(to) = xo

u1(+), uz(-) = controls implemented by the two players

Goal of j-th player:

-
maximize: Ji = 1,!},-(X(T)) —/ Li(X(t)7 up(t), U2(t)) dt

to

= [terminal payoff] - [running cost]
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Differential games in infinite time horizon

Dynamics: x = f(x,u1,w), x(0) = xo

Goal of i-th player:
“+oo
maximize: J; = / e TPV (x(t), ui(t), wa(t)) dt
0

(running payoff, exponentially discounted in time)
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Example 1: an advertising game

@ Two companies, competing for market share

state variable:  x(t) € [0,1] = market share of company 1, at time t

X = (1—=x)uy —xum

controls:  uy, up = advertising rates

.
payoffs:  J; = Nx,-(T)p,-—/ ciui(t) dt i=1,2
0

N = expected number of items purchased by consumers

p;i = profit made by player i/ on each sale

¢; = advertising cost

x; = market share of player i a=x, x=1-—x)
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Example 2: harvesting of marine resources

x(t) = amount of fish in a lake, at time t

dynamics: X = ax(M —x) — xu; — xu2

controls: w1, up = harvesting efforts by the two players

+oo
payoffs:  J; = / e " (pxu; — cju;) dt
0

p = selling price of fish

¢; = harvesting cost
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Example 3: a producer vs. consumer game

. . p = price
State variables: { 4 — size of the inventory
. a(t) = production rate
Controls: { b(t) = consumption rate
N M . * fr— |
The system evolves in time according to { Z - gj(bqo/CI)

Here qo is an “appropriate” inventory level

Jproducer - /0 - e vt [p(t) . b(t) - C(a(t))} dt

Payoffs:
—+o00
_jconsumer - / et [¢(b(t)) — p(t)b(t)] dt
0

c(a) = production cost,  ¢(b)= utility to the consumer
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Solution concepts

@ No outcome can be optimal simultaneously for all players

Different outcomes may arise, depending on

@ information available to the players

@ their ability and willingness to cooperate
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Nash equilibria (in infinite time horizon)

Seek: feedback strategies: uf(x), u5(x) with the following properties

@ Given the strategy u» = u3(x) adopted by the second player,
for every initial data x(0) = y, the assignment u; = uj(x) provides a
solution to the optimal control problem for the first player:

max / e W (x, ug, uj(x)) dt
wu() Jo

subject to
x = f(x,u,u3(x)), x(0) =y

@ Similarly, given the strategy u; = uj(x) adopted by the first player, the
feedback control uy = u}(x) provides a solution to the optimal control
problem for the second player.
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Solving an optimal control problem by PDE methods

subject to:

x(t) = f(x(t),u(t)) x(0) =y u(t) e U

V(y) = minimum cost, if the system is initially at y
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A PDE for the value function (by Bellman's dynamic programming)

y +ef(y,0)
x(t)
y =x(0)

If we use the constant control u(t) = w for t € [0, ¢]
then we play optimally for t € [e,00[, the total cost is

(/os * /:‘”) e L(x(t), u(t)) dt

= el(y,w)+e ¢ V(y + ef(y,w)) + o(e)

e

el(y,w)+ (1 =v)V(y) + VV(y) - ef(y,w) + o(e)
> V(y)

Minimize w.r.t. w:

we

V(y) = Vly) =1eV(y) +e - min {L(y,w) +VV(y)- f(y,w)} + o(e)
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The Hamilton-Jacobi PDE for the value function

V(y) = V(y) =7eV(y) +-&-min {L(y, w)+VV(y)- f(w»)} +o(e)
Letting € — 0 we obtain

wel

YV(y) = min {L(y,w)+VV(y)'f(y,w)} = H(y,VV(y))

If V/(-) is known, the optimal feedback control can be recovered by

u*(y) = argmin {L(y,w)+VV(y)-f(y,W)}

wel
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An example

L o u?(t)
minimize: /0 (qb( () + 5 > dt
subject to: X = f(x)+ g(x)u, x(0) =y, u(t) eR

The value function  V(y) = minimum cost starting at y satisfies the PDE

W) = ¢(x) +VV(x) F(x) = 53 (VV(x) - g(x))?
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Finding the optimal feedback control

x = f(x)+g(x)u
VV(x)
g(x)

V = const.

If V(-) is known, the optimal control can be recovered by
2

u*(x) = argmin {VV(X)-g(x)u—l—u?} = —VV(x) g(x)

Alberto Bressan (Penn State) Noncooperative Games

23 /27



Solving a differential game by PDE methods

Dynamics: x = f(x) + gi(x)u1 + g (x)uz

_ o - u? (t)
Player i seeks to minimize: J; = e | di(x(t)) + dt
0

The value functions Vi, V; for the two players satisfy the system of H-J equations
Wi = (F- VW) = 3 VVA)* — (g2- VVi)(g2 - VV2) + 61
Vo = (F-VVo) = 3(&2- VVo)2 — (&1 - VVi)(g1- VV2) + 2
Optimal feedback controls:  u¥(x) = — VVi(x) - gi(x) i=1,2
highly nonlinear, implicit !
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Linear - Quadratic games

Assume that the dynamics is linear:

X = (/4X-|-|J())—|-blul-i-bQUQ7 X(O):y

and the cost functions are quadratic:

+oo u?
Ji = / e*”(a; x4+ xTPix + ?') dt
0

Then the system of PDEs has a special solution of the form
Vi(x) = ai+ Bi-x+x"Tix i=1,2 (*)
optimal controls: u¥*(x) = —(B; +2x'T;)-b;

To find this solution, it suffices to
determine the coefficients «;, 8;,'; by solving a system of algebraic equations
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Validity of linear-quadratic approximations ?

Assume the dynamics is almost linear
x = fo(x)+g1(x)u1+g2(x)u2 = (Ax+bg)+bius+bouy, x(0)=y

and the cost functions are almost quadratic
2

+o00 u_2 400 u?
Ji = / e Mt (qﬁ,-(x)—i— —’) dt ~ / e " (a,- x+xTPix+ —’) dt
0 2 0 2

Is it true that the nonlinear game has a feedback solution close to the
linear-quadratic game?
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