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The mathematics of financial risk measurement

Introduction to the capital adequacy problem

Capital adequacy
As scientists we observe the real world and build mathematical models of
it. This allows us to (approximately) describe the world and solve
problems therein. One such problem evolves around capital adequacy:

� Liability holders and regulators of financial institutions are credit
sensitive.

� They are concerned that the value of the institution’s assets is
insufficient to cover its liabilities.

� To address this concern financial institutions hold risk capital,
which is meant to absorb unexpected losses.

The capital adequacy problem is then:

� How much risk capital a financial institution should be required to
hold to be deemed adequately capitalized by the regulator?

Related regulatory frameworks:
Swiss Solvency Test (2006), Solvency II (2011), Basel III-IV (2012-2014).
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The mathematics of financial risk measurement

Introduction to the capital adequacy problem

Objective of the presentation

Objective of the presentation

� Highlight mathematical aspects of the capital adequacy problem and
examine a new form of it.

� Introduce recently developed risk measures that capture such
situations in the original spirit of Artzner, Delbaen, Eber, Heath
[ADEH99].

� Investigate possible acceptability adjustment procedures based on
monetary risk measures and a new concept: intrinsic risk measures.
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The mathematics of financial risk measurement

Introduction to the capital adequacy problem
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The mathematics of financial risk measurement

Formalizing the capital adequacy problem

Formalizing the capital adequacy problem

Key ingredients are:

● a set X representing net terminal financial positions,

● an acceptance set A ⊂ X representing acceptable positions,

● a class M of admissible management actions,

● a cost function c ∶M → R,

● an impact function I ∶ X ×M → X .

The capital required to make an unacceptable position X ∈ X acceptable
by implementing an admissible management action can be defined as

ρ(X ) = inf{c(m) ∈ R ∣m ∈M ∶ I (X ,m) ∈ A} .

Key observation is:

� the acceptance set A is the only pre-specified element (by regulator).
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The mathematics of financial risk measurement

Formalizing the capital adequacy problem

Terminology and preliminaries

Terminology and preliminaries

In mathematical finance, we often use the notion of probability spaces
and random variables.

● Let (Ω,F) be a measurable space defined by a sample space
Ω ≠ ∅ and a σ-algebra F ⊂ P(Ω).

● Real-valued random variables X ∶ (Ω,F) → (R,B(R)) serve as
representatives of future financial positions. Let L0(Ω,F) denote
the vector space of all such (F ,B(R))-measurable functions.

● Adding a probability measure P ∶ F → [0,1] to the tuple (Ω,F) we
get a probability space (Ω,F ,P).

● Denote by L0(Ω,F ,P) the vector space of equivalence classes in
L0(Ω,F) with respect to P-almost sure equality and equip it with
the topology of convergence in probability.
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Formalizing the capital adequacy problem

Financial positions

Financial positions

In general, given a probability space (Ω,F ,P), financial positions live in

� topological (we can determine if positions are close to each other)

� vector (we can aggregate positions)

spaces

� equipped with the P-almost sure ordering:
X ≤ Y if and only if P[X ≤ Y ] = 1.

Example Possible choices could be

● L∞(Ω,F ,P) = {X ∈ L0(Ω,F ,P) ∣ ∥X ∥L∞(P) < ∞} equipped with the
supremum norm ∥X ∥L∞(P) = P- ess supω∈Ω ∣X (ω)∣.

● For p ∈ [1,∞), Lp(Ω,F ,P) = {X ∈ L0(Ω,F ,P) ∣ ∥X ∥Lp(P) < ∞}
equipped with the Lp-norm ∥X ∥Lp(P) = E[∣X ∣p].
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Formalizing the capital adequacy problem

Acceptance sets: Definition

Acceptable financial positions

Introduce acceptability structure to the mathematical framework.

Definition (Acceptance sets) A subset A ⊂ X is called an
acceptance set if it is

● non-trivial, i.e. A ≠ ∅ and A ⊊ X , and

● monotone, i.e. XT ∈ A, YT ∈ X , and YT ≥ XT imply YT ∈ A.

These assumptions are based on
minimal requirements of financial rationality:

� Some, but not all, positions should be acceptable,

� A position dominating an acceptable position should be acceptable.
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Formalizing the capital adequacy problem

Acceptance sets: Properties

Properties of acceptance sets

An acceptance set A ⊂ X is called

● a cone if XT ∈ A Ô⇒ ∀λ > 0 ∶ λXT ∈ A,

● convex if XT ,YT ∈ A Ô⇒ ∀λ ∈ [0,1] ∶ λXT + (1 − λ)YT ∈ A,

● closed if A = Ā,
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Formalizing the capital adequacy problem

Acceptance sets: Examples

Examples of acceptance sets

Let q+α(X ) be the upper quantile of a random variable X at level α ∈ (0,1).

+

+

−

−

Figure: Distribution function F and its quantile function F−1. Source:
https://en.wikipedia.org/wiki/Quantile_function
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The mathematics of financial risk measurement

Formalizing the capital adequacy problem

Acceptance sets: Examples

Examples of acceptance sets

Let q+α(X ) be the upper quantile of a random variable X at level α ∈ (0,1).

1. The quantile-based (or VaRα) acceptance set is

Aα = {X ∈ X ∣q+α(X ) ≥ 0} = {X ∈ X ∣P[X < 0] ≤ α} .

Aα is a cone, but it is not convex in general.

2. The shortfall quantile-based (or ESα) acceptance set at level α ∈
(0,1) is

Aα = {X ∈ X ∣E [X1{X≤q+α(X)}] ≥ 0} ,

assuming that X has a continuous distribution function (which implies
P[X ≤ q+α(X )] = α). Aα is coherent.
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Formalizing the capital adequacy problem

Investing in a single asset

Investing in a single asset

A first specification to the capital adequacy problem.
Landmark reference Artzner, Delbaen, Eber, Heath [ADEH99].

Take a traded asset S = (S0,ST ) with current value S0 > 0 and terminal
nonzero payoff ST ≥ 0, and let

● M = {λST ∣λ ∈ R}, representing payoffs of positions in S ,

● c(λST ) = λS0, representing the cost of an investment in S ,

● I (X , λST ) = X + λST , representing the impact on the position.

Definition The risk measure or capital requirement based on
(X ,A,M, c , I ) as above is the map ρA,S ∶ X → R defined by

ρA,S(X ) = inf {c(λST ) ∈ R ∣ I (X , λST ) ∈ A}

= inf {λS0 ∈ R ∣X + λST ∈ A} = inf {m ∈ R ∣X + m

S0
ST ∈ A} .
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The mathematics of financial risk measurement

Monetary risk measures

General properties: S-additivity and monotonicity

General properties of risk measures

Proposition Let A ⊂ X be an acceptance set, and S a traded asset with
price S0 > 0 and nonzero payoff ST ∈ X+. Then

� ρA,S is S-additive, that means for λ ∈ R

ρA,S(X + λST ) = ρA,S(X ) − λS0

� ρA,S is decreasing, since A is monotone, that means

X ≤ Y implies ρA,S(X ) ≥ ρA,S(Y ) .

From a financial point of view

� S-additivity: investing in S has a linear effect on cap. requirements.

� Monotonicity: riskier positions need higher risk capital.
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The mathematics of financial risk measurement

Monetary risk measures

One specific property: Cash-additivity

Cash-additive risk measures

Main references
Föllmer, Schied [FS04], Frittelli, Rosazza Gianin [FRG02].

Definition Let A ⊂ X be an acceptance set, and S = (1,1Ω). The risk
measure ρA,S is called cash-additive and we write

ρA(X ) = ρA,1(X ) = inf{m ∈ R ∣X +m1Ω ∈ A} .

In this case, S-additivity is called cash-additivity, meaning for λ ∈ R

ρA(X + λ1Ω) = ρA(X ) − λ .

From a financial point of view

� the traded asset corresponding to a cash-additive risk measure can
be regarded as a risk-free bond with zero interest rate.
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The mathematics of financial risk measurement

Monetary risk measures

One specific property: Cash-additivity

Why cash-additive? Choice of the numéraire

Typical argument in favour of cash-additive risk measures:

Let A ⊂ X be an acceptance set and S = (S0, rS0) a bond with return
rate r > 0. The risk measure ρA,S can be expressed in terms of ρAS

as

ρA,S(X ) = S0 ρAS
( X

ST
) , where AS = { X

ST
∣X ∈ A} .

From an accounting point of view

� X is a future position expressed in cash,

� ρA,S(X ) is a capital amount today,

� X
ST

is a future discounted position,

� ρAS
( X
ST

) is a capital amount today corresponding to a future
discounted position.

14 / 36



The mathematics of financial risk measurement

Monetary risk measures

Examples of cash-additivity

Examples of cash-additive risk measures I
The Value-at-Risk of a position X ∈ X at level α ∈ (0,1) is

VaRα(X ) = ρAα(X ) = −q+α(X ) ,

where

Aα = {X ∈ X ∣P[X < 0] ≤ α} .
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The mathematics of financial risk measurement

Monetary risk measures

Examples of cash-additivity

Examples of cash-additive risk measures II
The Tail Value-at-Risk of a position X ∈ X at level α ∈ (0,1) is

TVaRα(X ) = ρAα(X ) = 1

α
∫

α

0
VaRβ(X )dβ ,

where

Aα = {X ∈ X ∣TVaRα(X ) ≤ 0} .
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The mathematics of financial risk measurement

Monetary risk measures

Is cash-additivity justified?

Cash additivity: reduction or simplification?

The cash-additive reduction should translate the original mathematical
problem into a more tractable one.

� In this respect, the key financial question is:
Can every relevant financial problem for the original model be
formulated after the cash-additive reduction?

� The complementary key mathematical question is:
Does every relevant mathematical property of ρA,S admit a
counterpart in the reduced cash-additive setting?

Unless the reference asset is a risk-free bond, neither question has a
positive answer!
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The mathematics of financial risk measurement

Monetary risk measures

Is cash-additivity justified?

One cannot always count on discounting

Let A be an acceptance set and S = (S0,ST ) a traded asset with
non-zero payoff ST ∈ X+, and recall that

ρA,S(X ) = inf {m ∈ R ∣X + m

S0
ST ∈ A} .

One question
Can we reduce ρA,S to a cash-additive risk measure?

Two comments

� If ST is bounded away from zero, that is ST ≥ ε for some ε > 0, then
discounting works.

� If not, either we lose control over the space where X /ST belongs to,
or we cannot even define X /ST .
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Monetary risk measures

Is cash-additivity justified?

One cannot always count on discounting

Two situations where the reduction does not work:

� Let ST ∼ logN(µ,σ) be log-normally distributed.

● Since the distribution is continuous, we have P[ST = 0] = 0.
● But P[ST ≤ λ] = 1

2
+ 1

2
erf( logλ−µ√

2σ
) > 0 for all λ > 0.

● Hence, ST is not bounded away from zero.
● Discounting is not possible as we lose control of the space of

discounted positions.

� Let ST be any defaultable instrument, that is P[ST = 0] > 0.
Discounting is not possible as we cannot define a discounted space.
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The mathematics of financial risk measurement

Monetary risk measures

Original approach

Original approach

Reintroduce maps ρA,S ∶ X → R of the form

ρA,S(X ) = inf {m ∈ R ∣X + m

S0
ST ∈ A} .

Investigation of the properties of ρA,S without preliminary assumptions
on A and S . In particular,

� ST might be not bounded away from zero, allowing default profiles.

� ST might even be zero in some future scenarios, allowing extreme
default profiles, e.g. zero recovery within time t = T .

The main advantage of this approach is the possibility to fix an
acceptability criterium A and get a family of risk measures compatible
with A by simply changing assets S .
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The mathematics of financial risk measurement

Monetary risk measures

Original approach: finiteness and continuity

Finiteness and continuity properties of ρA,S

Requiring ρA,S to be finite and continuous at X ∈ X is
economically meaningful:

� If ρA,S(X ) = ∞, then X cannot be made acceptable by investing any
amount of capital in the asset S , suggesting S is not a good vehicle
to reach acceptability.

� If ρA,S(X ) = −∞, then extraction of arbitrary amounts of capital
without loosing acceptability is possible, suggesting that A might be
too large.

� If ρA,S is not continuous at X , then a slight change in the balance
sheet may lead to a dramatical change in the corresponding required
capital.

� (Lower semi-) continuity typically allows to obtain important dual
representations.
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Monetary risk measures

Application: Value-at-Risk acceptability

The interplay between A and S

Example: Value-at-Risk acceptability

Let (Ω,F ,P) be nonatomic, and set X = Lp with 0 ≤ p ≤ ∞.
Recall that for 0 < α < 1

Aα = {X ∈ Lp ∣P[X < 0] ≤ α} ,

VaRα(X ) = ρAα(X ) = inf {m ∈ R ∣P[X +m < 0] ≤ α} .

Proposition Let S be the reference asset.

1. Assume p = ∞. Then the following statements hold:
● ρAα,S is finite if and only if VaRα(ST ) < 0 < VaRα(−ST ),
● ρAα,S is continuous if and only if ST ≥ ε P−a.s. for some ε > 0.

2. Assume p < ∞. Then the following statements hold:
● ρAα,S is finite if and only if P[ST = 0] < min{α,1 − α},
● ρAα,S is never continuous on whole Lp.
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Monetary risk measures

Application: Tail Value-at-Risk acceptability

The interplay between A and S

Example: Tail Value-at-Risk acceptability

Let (Ω,F ,P) be nonatomic, and set X = Lp with 1 ≤ p ≤ ∞.
Recall that for 0 < α < 1

TVaRα(X ) = ρAα(X ) = 1

α
∫

α

0
VaRβ(X )dβ .

Proposition Let S be the reference asset.
The following statements are equivalent:

1. ρAα,S is finitely valued,

2. ρAα,S is (Lipschitz) continuous,

3. there exists a λ > 0 such that P[ST < λ] < α,

4. TVaRα(ST ) < 0.
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Summary of the monetary approach

Intermediate summary

The capital requirement of a position X based on A and S = (S0,ST )
has been defined as

ρA,S(X ) = inf {m ∈ R ∣ X + m

S0
ST ∈ A} .

Main results

� Extension of the theory of cash-additive risk measures.

� The asset S is not assumed to be risk-free: S might describe a
stock, a zero-coupon bond with stochastic recovery, a general
defaultable security.

� Finiteness and continuity as a result of the interplay between A
and S .
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Intrinsic risk measures

Recent developments: intrinsic risk measures

We have learned
Monetary risk measures suggest a procedure to make an unacceptable
position acceptable:

Given an unacceptable position X , ρA,S(X )/S0 units of the
reference asset S are bought and added to make the overall
position acceptable.

However, one must raise and carry the monetary amount ρA,S(X )
suggested by the risk measure.

� This can be difficult in practice.

� Monetary risk measures do not entirely account for the acquisition of
capital.
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Intrinsic risk measures

Recent developments: intrinsic risk measures

Monetary risk measures are based on the following suggestion in
[ADEH99, Section 2.1]:

‘The current cost of getting enough of this or these [commonly
accepted] instrument(s) is a good candidate for a measure of
risk of the initially unacceptable position.’

This is not the only applicable approach and they also mention that

‘For an unacceptable risk [...] one remedy may be to alter the
position.’
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Intrinsic risk measures

Definition and motivation

Introducing intrinsic risk measures

We propose to use the current value of the financial position as a
specified amount of available capital, and invest it into a reference asset.

Let A ⊂ X be a closed acceptance set containing 0.

Definition (Extending the notion of financial positions)
● Financial positions are tuples X = (X0,XT ) ∈ R>0 × X .

● S = (S0,ST ) is an eligible asset if S ∈ R>0 ×A and ST ≥ 0.

Definition (Intrinsic risk measure) Let S be an eligible asset. An
intrinsic risk measure is a map RA,S ∶ R>0 × X → [0,1] defined by

RA,S(X ) = inf {λ ∈ [0,1] ∣ (1 − λ)XT + λX0

S0
ST ∈ A} .
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Intrinsic risk measures

Definition and motivation

Introducing the intrinsic risk measure

RA,S(X ) = inf {λ ∈ [0,1] ∣ (1 − λ)XT + λX0

S0
ST ∈ A} .

Motivation
� Dissociate from hypothetical money as a measure of risk, and reflect

on the initial value of your financial position.

� Direct path towards the acceptance set leads to less costly
management actions.

� Treatment of risk measures tending to infinity becomes redundant,
and the focus lies on unacceptable positions.

� Monotonicity and quasi-convexity follow from the structure
of the acceptance set.
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Intrinsic risk measures

A visual comparison to monetary risk measures

Illustration of the new approach

� Intrinsic risk measures are directly based on the diversification
principle and provide more direct paths towards the acceptance set.

(a) Monetary risk measures (b) Intrinsic risk measures

Figure: The payoff of the eligible asset (yellow D) is used to make the
unacceptable position (blue 2) acceptable (green #).
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Intrinsic risk measures

Properties on conic acceptance sets

Conic acceptance sets, e.g. VaR and TVaR acceptability
Let A be a closed, conic acceptance set and recall the monetary risk
measure

ρA,S(XT ) = inf {m ∈ R ∣XT + m

S0
ST ∈ A} .

The intrinsic risk measure with respect to the same acceptance set and
eligible asset can be written as

RA,S(X ) = (ρA,S(XT ))+
X0 + ρA,S(XT ) .

Consequences

� The intrinsic approach requires less nominal value to reach
acceptability (holds also true for convex acceptance sets), this means

X0RA,S(X ) ≤ ρA,S(XT ) .
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Intrinsic risk measures

Properties on conic acceptance sets

� The intrinsic approach yields financial positions with the same
performance as those resulting from the traditional approach.

Traditional approach: X0 z→ X ρ
0 = X0 + ρA,S(XT ) ,

XT z→ X ρ
T = XT + ρA,S(XT )

S0
ST .

Intrinsic approach: X0 z→ XR
0 = X0 ,

XT z→ XR
T = (1 − RA,S(X ))XT + X0RA,S(X )

S0
ST .

On cones, we have

X ρ
T

X ρ
0

= XR
T

XR
0

.
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Intrinsic risk measures

Properties on convex acceptance sets

Convex acceptance sets, e.g. TVaR and utility acceptance

On a probability space (Ω,F ,P) let

� A be a closed, convex acceptance set,

� Mσ(P) be the set of all σ-additive probability measures Q≪ P, and

� α(Q,A) = inf
YT ∈A

EQ[YT ] be a penalty function.

Intrinsic risk measures can be written as

RA,S(X ) = sup
Q∈Mσ(P)

(α(Q,A) −EQ[XT ])+
X0

S0
EQ[ST ] −EQ[XT ]

.

Consequences

� Intrinsic risk measures have a dual representation: a normalized
version of the dual representation of monetary risk measures.
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Literature outside cash-additivity
Risk measures of the form ρA,S have been occasionally treated.

� Artzner, Delbaen, Eber, and Heath [ADEH99] work on a finite state
space under the assumption that ST is bounded away from zero.

� Frittelli and Scandolo [FS06] provide a result on finiteness on L∞

under the assumption that ST is bounded away from zero.

� Filipović and Kupper [FK08] show that if X is an ordered normed
space and there exists λ > 0 such that X ≥ −λ ∥X ∥ST for every
X ∈ X , then ρA,S is finitely valued and Lipschitz continuous.
The previous assumption is equivalent to ST ∈ int(X+).

� Artzner, Delbaen, and Koch-Medina [ADKM09] work on a finite
sample space under the assumption that ST is bounded away from
zero.

� Konstantinides and Kountzakis [KK11] show continuity properties of
ρA,S on an ordered normed space X under the assumption that
ST ∈ int(X+).
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