Dynamic Blocking Problems for a Model of Fire Propagation

Alberto Bressan

Mathematics Department, Penn State University

(Waterloo, 2011)

Blocking an advancing wildfire

A Differential Inclusion Model for Fire Propagation

$$R(t) \subset \mathbb{R}^2$$
 = set reached by the fire at time $t \geq 0$

determined as the reachable set by a differential inclusion

$$\dot{x} \in F(x)$$
 $x(0) \in R_0 \subset \mathbb{R}^2$

Fire may spread in different directions with different velocities

$$R(t) = \begin{cases} x(t); & x(\cdot) \text{ absolutely continuous}, \end{cases}$$

$$x(0) \in R_0$$
, $\dot{x}(\tau) \in F\big(x(\tau)\big)$ for a.e. $\tau \in [0,t]$

Confinement Strategies

(A.B., J.Differential Equations, 2007)

Assume: a **controller** can construct a **wall**, i.e. a one-dimensional rectifiable curve γ , which blocks the spreading of the fire.

 $\gamma(t)\subset\mathbb{R}^2=$ portion of the wall constructed within time t $\sigma=$ speed at which the wall is constructed

Definition 1. A set valued map $t\mapsto \gamma(t)\subset \mathbb{R}^2$ is an admissible strategy if :

(H1) For every $t_1 \leq t_2$ one has $\gamma(t_1) \subseteq \gamma(t_2)$

(H2) Each $\gamma(t)$ is a rectifiable set (possibly not connected). Its length satisfies

$$m_1(\gamma(t)) \leq \sigma t$$

Definition 2. The reachable set determined by the blocking strategy γ is

$$R^{\gamma}(t) \doteq \left\{ x(t); \ x(\cdot) \ \text{ absolutely continuous}, \ x(0) \in R_0
ight.$$
 $\dot{x}(au) \in Fig(x(au)ig) \ \text{ for a.e. } au \in [0,t], \qquad x(au)
otin \gamma(t) \quad \text{for all } au \in [0,t] \
ight\}$

REMARK: Walls must be constructed in real time!

An admissible strategy is described by a set-valued function $t\mapsto \gamma(t)\subset \mathbb{R}^2$

 $\gamma(t)$ = portion of the wall constructed within time t

5 / 57

Static vs. Dynamic Blocking Problems

Static problems

minimizing enclosed area

minimizing length

minimizing area + length

Dynamic problem

Optimal Confinement Strategies

A cost functional should take into account

- The value of the region destroyed by the fire.
- The cost of building the wall.
- $\alpha(x)$ = value of a unit area of land around the point x
- $\beta(x) = \cos t$ of building a unit length of wall near the point x

COST FUNCTIONAL

$$J(\gamma) \doteq \lim_{t \to \infty} \left\{ \int_{R^{\gamma}(t)} \alpha \, dm_2 + \int_{\gamma(t)} \beta \, dm_1 \right\}$$

Mathematical Problems

1. Blocking Problem.

Given an initial set R_0 , a multifunction F and a wall construction speed σ , does there exist an admissible strategy $t\mapsto \gamma(t)$ such that the reachable sets $R^{\gamma}(t)$ remain uniformly bounded for all t>0?

2. Optimization Problem.

Find an admissible strategy $\gamma \in \mathcal{S}$ which minimizes the cost functional $J(\gamma)$.

- (i) Existence of an optimal solution
- (ii) **Necessary conditions** for the optimality of an admissible strategy $\gamma(\cdot)$
- (iii) **Regularity** of the curves $\gamma(t)$ constructed by an optimal strategy
- (iv) Sufficient conditions for the optimality of a strategy $\gamma(\cdot)$
- (v) Numerical computation of an optimal strategy

Equivalent Formulation

(A.B. - T. Wang, Control Optim. Calc. Var. 2009)

Blocking Problems and Optimization Problems can be reformulated in terms of one single rectifiable set Γ

$$(\mathsf{strategy}) \qquad t \mapsto \gamma(t) \qquad \longleftrightarrow \qquad \mathsf{\Gamma} \qquad (\mathsf{single \ wall})$$

$$\gamma(\cdot) \longrightarrow \Gamma \doteq \left(\bigcup_{t>0} \gamma(t)\right) \setminus \left(\bigcup_{t>0} R^{\gamma}(t)\right) \quad \text{(useful walls)}$$

$$\Gamma \longrightarrow \gamma(t) \doteq \Gamma \cap \overline{R^{\Gamma}(t)}$$
 (walls touched by the fire within time t)

Complete strategies

A rectifiable set Γ is **complete** if it contains all of its points of positive upper density:

$$\theta^*(\Gamma;x) \; \doteq \; \limsup_{r \to 0+} \frac{m_1\Big(B(x,r) \cap \Gamma\Big)}{r} \; > \; 0 \qquad \Longrightarrow \qquad x \in \Gamma \, .$$

The **reachable sets** for the differential inclusion

$$\dot{x} \in F(x)$$
 $x(0) \in R_0$ (DI)

without crossing Γ are

$$R^{\Gamma}(t) \doteq \left\{ x(t); \ x(\cdot) \text{ absolutely continuous}, \ x(0) \in R_0 \right.$$
 $\dot{x}(\tau) \in F(x(\tau)) \text{ for a.e. } \tau, \qquad x(\tau) \notin \Gamma \text{ for all } \tau \in [0,t] \right\}$

Admissible curves

The complete, rectifiable set Γ is **admissible** for the differential inclusion (DI) and the construction speed σ if, for every $t \ge 0$, the set

$$\gamma(t) \doteq \Gamma \cap \overline{R^{\Gamma}(t)}$$

has total length $m_1(\gamma(t)) \leq \sigma t$

 $\gamma(t)$ = portion of Γ that needs to be in place by time t

Equivalent Formulations

$$R_{\infty}^{\Gamma} \doteq \bigcup_{t>0} R^{\Gamma}(t) = [\text{total region burned by the fire}]$$

Blocking Problem 2: Find an admissible rectifiable set $\Gamma \subset \mathbb{R}^2$ such that the corresponding reachable set R^{Γ}_{∞} is bounded.

Optimization Problem 2: Find an admissible rectifiable set $\Gamma \subset \mathbb{R}^2$ which minimizes the cost

$$J(\Gamma) = \int_{R_{\infty}^{\Gamma}} \alpha \, dm_2 + \int_{\Gamma} \beta \, dm_1$$

Blocking the Fire

- Fire propagates in all directions with unit speed: $F(x) = B_1$
- ullet Wall is constructed at speed σ

Theorem (A.B., J.Differential Equations, 2007)

On the entire plane, the fire can be blocked if $\sigma > 2$, it cannot be blocked if $\sigma < 1$.

Blocking Strategy: If $\sigma > 2$, construct two arcs of logarithmic spirals along the edge of the fire

$$\gamma(t) \doteq \left\{ (r, \theta); \quad r = \mathrm{e}^{\lambda |\theta|}, \quad 1 \leq r \leq 1 + t
ight\}, \qquad \lambda \doteq \frac{1}{\sqrt{rac{\sigma^2}{4} - 1}}$$

When can the fire be blocked?

Conjecture: Assume the fire propagates with speed 1 in all directions. On the entire plane the fire can be blocked if and only if $\sigma > 2$

Single spiral strategy: curve closes on itself if and only if $\sigma > \sigma^{\dagger} = 2.614430844\dots$ (M. Burago, 2006)

Non-isotropic fire propagation

Theorem. (A.B., M. Burago, A. Friend, J. Jou, Analysis and Applications, 2008) If the wall construction speed satisfies

$$\sigma \ > \ [\text{vertical width of} \ F] \ = \ 2 \max_{\theta \in [0,\pi]} \ \rho(\theta) \sin \theta$$

then, for every bounded initial set R_0 , a blocking strategy exists

The isotropic case on the half plane

- Fire propagates in all directions with unit speed. $F(x) = B_1$
- ullet Wall is constructed at speed σ

Theorem. (A.B. - T.Wang, J.Math Anal.Appl. 2009)

Restricted to a half plane, the fire can be blocked if and only if $\sigma>1$

BLOCKING STRATEGY: If $\sigma>1$, the fire can be enclosed between the horizontal axis and an arc of logarithmic spiral

$$\lambda \doteq \frac{1}{\sqrt{\sigma^2 - 1}}$$
 $\Gamma \doteq \left\{ (r, \theta); \quad r = e^{\lambda \theta}, \quad \theta \in [0, \pi] \right\}$

Regularity of the distance function

 $d_K(x,y) \doteq \text{minimum length among all paths } \gamma : [0,1] \mapsto K \text{ joining } x \text{ with } y$

Lemma. If $K \subset \mathbb{R}^2$ is compact, simply connected, then the map $y \mapsto d_K(x,y)$ is C^1 in the interior of $K \setminus \{x\}$.

 $\sup_{x,y\in K} d_K(x,y)$ is attained at boundary points.

Estimates on the distance function

Assume: barrier Γ is completed at time T > 0

S =segment joining the points a, b

Any two points $x,y\in K$ can be connected by a path γ_{xy} of length

$$m_1(\gamma_{xy}) \leq \frac{1}{2}m_1\bigg(\Gamma \cup S\bigg) \leq \frac{1}{2}\bigg(\sigma T + (b-a)\bigg) < \sigma T$$

Same conclusion in the case of several connected components

Any two points $x, y \in K$ can be connected by a path γ_{xy} of length

$$m_1(\gamma_{\mathsf{x}\mathsf{y}}) \ \le \ \frac{1}{2} m_1 igg(\Gamma \cup \mathcal{S} igg) \ \le \ \frac{1}{2} igg(\sigma \, T + (b-a) igg) \ < \ \sigma \, T$$

No strategy can block the fire if $\sigma \leq 1$

x = position of "last brick of the wall"

Fire reaches x and spreads outside, before time T when the barrier is completed

$$d_K(x,y) \leq \max_{x \in \partial K} d_K(x,y) \leq \frac{1}{2} m_1(\Gamma \cup S) \leq m_1(\Gamma) \leq \sigma T$$

Existence of Optimal Strategies

Fire propagation: $\dot{x} \in F(x)$ $x(0) \in R_0$

Wall constraint: $\int_{\gamma(t)} \psi \, dm_1 \leq t$ $(1/\psi(x) = \text{construction speed at } x)$

Minimize: $J(\gamma) = \left\{ \int_{R^{\gamma}(t)} \alpha \, dm_2 + \int_{\gamma(t)} \beta \, dm_1 \right\}$

Assumptions:

- (A1) The initial set R_0 is open and bounded. Its boundary satisfies $m_2\left(\partial R_0\right)=0$.
- (A2) The multifunction F is Lipschitz continuous w.r.t. the Hausdorff distance. For each $x \in \mathbb{R}^2$ the set F(x) is compact, convex, and contains a ball of radius $\rho_0 > 0$ centered at the origin.
- (A3) For every $x \in \mathbb{R}^2$ one has $\alpha(x) \ge 0$, $\beta(x) \ge 0$, and $\psi(x) \ge \psi_0 > 0$. α is locally integrable, while β and ψ are both lower semicontinuous.

(Waterloo, 2011)

Theorem (A.B. - C. De Lellis, *Comm. Pure Appl. Math.* 2008)

Assume (A1)-(A3), and $\inf_{\gamma \in \mathcal{S}} J(\gamma) < \infty$.

Then the minimization problem admits an optimal solution γ^* .

Direct method: Consider a minimizing sequence of strategies $\gamma_n(\cdot)$ Define the optimal strategy γ^* as a suitable limit.

STEP 1: Replace the $\gamma_n(\cdot)$ by **complete strategies** γ_n^c

$$\theta^*(E,x) \doteq \limsup_{r\downarrow 0} \frac{m_1(B(x,r)\cap E)}{2r}$$
 (upper density)

$$\overline{\gamma}_n(t) \ \doteq \ \gamma_n(t) \ \cup \ \left\{ x \in \mathbb{R}^2 \, ; \quad \theta^*(\gamma_n(t), x) > 0 \right\}, \qquad \qquad \gamma_n^c(t) \ \doteq \ \bigcap_{s > t} \overline{\gamma}_n(s)$$

STEP 2: For each rational time τ , order the connected components of $\gamma_n(\tau)$ according to decreasing length:

$$\ell_{n,1} \ge \ell_{n,2} \ge \ell_{n,3} \ge \cdots$$
 $\gamma_n(t) = \gamma_{n,1} \cup \gamma_{n,2} \cup \gamma_{n,3} \cup \cdots$

Taking a subsequence, as $n \to \infty$ we can assume

$$\ell_{n,i}(au)
ightarrow \ell_i(au) \qquad \qquad \gamma_{n,i}(au)
ightarrow \gamma_i(au) \qquad \qquad au \in \mathbf{Q}$$

We then define $\gamma(\tau) \doteq \bigcup \gamma_i(\tau)$. Finally $\gamma^*(\cdot) \doteq$ completion of $\gamma(\cdot)$. $i > 1, \ell_i(\tau) > 0$

(Waterloo, 2011) 24 / 57

STEP 3: Lower semicontinuity of ψ, β imply

$$\int_{\gamma^*(t)} \psi \, dm_1 \, \leq \, \liminf_{n \to \infty} \int_{\gamma_n(t)} \psi \, dm_1 \, \leq \, t \qquad \qquad \int_{\gamma^*(t)} \beta \, dm_1 \leq \liminf_{n \to \infty} \int_{\gamma_n(t)} \beta \, dm_1$$

Hence the limit strategy $\gamma(\cdot)$ is admissible.

STEP 4:

$$\int_{R^{\gamma^*}(t)} \alpha \, dm_2 \, \leq \, \liminf_{n \to \infty} \int_{R^{\gamma_n}(t)} \alpha \, dm_2$$

Claim: given $y \in R^{\gamma^*}(t)$ and r > 0, for every n large: $R^{\gamma_n}(t) \cap B(y,r) \neq \emptyset$

Given
$$\varepsilon > 0$$
, decompose: $\gamma_n(\tau) = \left(\bigcup_{i \leq i_1(\tau)} \gamma_{n,i}^{\tau}\right) \cup \gamma_n'(\tau) \cup \gamma_n''(\tau)$

 $[large\ connected\ components]\ \cup\ [small\ connected\ components]\ \cup\ [debris]$

$$m_1(\gamma_n'(\tau)) < \varepsilon$$
 $m_1(\gamma_n''(\tau)) = \mathcal{O}(1)$

 $\lim_{n\to\infty} [\text{maximum length of connected components in } \gamma_n''] = 0$

- Shift the trajectory x^{\sharp} so that it crosses an amount $\mathcal{O}(\varepsilon)$ of debris (connected components of γ_n'') for all n.
- Take detours of total length $\mathcal{O}(\varepsilon)$ to get around the small connected components γ_n' and the debris.

Given $x(\cdot)$, find a shifted trajectory $x^{\nu}(\cdot)$ so that $[\text{total length of connected components of }\Gamma\text{ crossed by }x^{\nu}(\cdot)]\ <\ \varepsilon$

Lemma 1: In case 2, this can be achieved by a shift $|v| = \mathcal{O}(\varepsilon)$

Lemma 2: J_0, J_1 edges of the unit square Q. For any $\mu > 0$ there exists $\kappa > 0$ such that:

If $W \subset Q$ is a set with $m_1(W) < \kappa$, then there is a set $K_0 \subseteq J_0$

- (i) $m_1(K_0) \geq 1 \mu$,
- (ii) For every $x \in K_0$, the set J_x of points $y \in J_1$ for which the segment [x, y] with endpoints x, y does not intersect W has measure $m_1(J_x) \ge 1 \mu$.

- Construct a σ -grid
- ullet Replace trajectory by a polygonal Y^σ
- If $m_1(\gamma_n \cup Q) > \kappa \sigma$ the square Q is black. Otherwise it is white.
- ullet Construct polygonal detours around the black islands, with total length $\mathcal{O}(arepsilon)$

ullet Modify the trajectory Y^* inside white squares so that the new polygonal Z does not cross any wall of γ_n

Alternative approach: the minimum time function

(C.DeLellis & R.Robyr, 2010)

$$\dot{x} \in F(x)$$
 $x(0) \in R_0 \subset \mathbb{R}^2$

Assume: $B(0, \rho) \subseteq F(x)$

Minimum time function:
$$T(x) \doteq \inf\{t \geq 0; x \in R(t)\}$$

is Lipschitz continuous and satisfies the Hamilton-Jacobi equation

$$H(x, \nabla T(x)) = 0$$
 a.e.

$$H(x, p) = \max_{v \in F(x)} \langle v, p \rangle - 1$$

The minimum time function with obstacle

Barrier: a complete, rectifiable set $\Gamma \subset \mathbb{R}^2$

 $T^{\Gamma}(x) \doteq \inf\{t > 0 : x \in R^{\Gamma}(t)\}$ Minimum time function with obstacle:

 $R^{\Gamma}(t) = \text{set of points reached by } F\text{-trajectories which start in } R_0$ and do not cross [

Goal: characterize T^{Γ} as the unique maximal subsolution to a H-J equation

A family S^{Γ} of subsolutions

Definition. A function $u: \mathbb{R}^2 \mapsto [0, \infty]$ is in the set \mathcal{S}^{Γ} if

- $u \in SBV$ $(Du = \nabla u + D^{jump}u + D^{Cantor}u, \text{ with } D^{Cantor}u \equiv 0)$
- $m_1(J_u \setminus \Gamma) = 0$ $(J_u \doteq \text{set of jump points of } u)$
- u = 0 on R_0
- $H(x, \nabla u(x)) \leq 0$ for a.e. x

 $abla u \doteq {\sf absolutely}$ continuous part of the distributional derivative ${\sf D} u$.

Theorem. (C.DeLellis & R.Robyr, 2010 - Archive Rat. Mech. Anal.)

Let Γ be a complete, rectifiable set. Then the minimum time function \mathcal{T}^{Γ} is the unique maximal element of \mathcal{S}^{Γ} .

Corollary. (C.DeLellis & R.Robyr, 2010)

Consider the cost functions $\alpha \geq 0, \beta \geq 0$, with α locally integrable and β lower semicontinuous. Then there exist a blocking strategy Γ which minimizes the cost among all admissible ones.

Proof of the Corollary. Take a minimizing sequence of admissible barriers Γ_k .

Consider the corresponding minimum time functions $T_{\iota} \doteq T^{\Gamma_{\iota}}$

Using the Ambrosio-De Giorgi compactness theorem for SBV functions, one obtains a convergent subsequence $T_k \to U$, such that

- $U \in SBV$
- the jump set J_U is a rectifiable set, and

$$\int_{J_U} \psi \, dm_1 \, \leq \, \liminf_{k \to \infty} \, \int_{J_{T_k}} \psi \, dm_1 \, \leq \, t \, .$$

Hence $\Gamma \doteq [\text{completion of } J_U]$ is an admissible barrier.

$$\int_{R_{\infty}^{\Gamma}} \alpha \ dm_2 \ \leq \ \liminf_{k \to \infty} \int_{R_{\infty}^{\Gamma_k}} \alpha \ dm_2 \qquad \qquad \int_{\Gamma} \alpha \ dm_2 \ \leq \ \liminf_{k \to \infty} \int_{\Gamma_k} \alpha \ dm_2$$

Necessary conditions for optimality

Problem: find an admissible barrier Γ which minimizes

$$J(\Gamma) \doteq \alpha \cdot [\text{total burned area}] + \beta \cdot [\text{length of the curve}]$$

GOAL: derive a set of ODE's describing the walls built by an optimal strategy

- A.B., J.Differential Equations, 2007
- A.B. T.Wang, ESAIM, Control Optim. Calc. Var. 2010
- T.Wang, *Intern. J. Control*, to appear.

Classification of arcs in an optimal strategy

Minimum time function $T^{\Gamma}(x) \doteq \inf \left\{ t \geq 0 \; ; \; x \in \overline{R^{\Gamma}(t)} \right\}$

Set of times where the constraint is saturated

$$\mathcal{S} \doteq \left\{ t \geq 0 \, ; \; \; \mathit{meas} \left(\Gamma \cap \overline{R^{\Gamma}(t)} \right) \; = \; \sigma t \, \right\}$$

Boundary arcs: $\Gamma_{\mathcal{S}} \doteq \{x \in \Gamma; \quad \mathcal{T}^{\Gamma}(x) \in \mathcal{S}\}$ constructed along the advancing fire front

Free arcs: $\Gamma_{\mathcal{F}} \doteq \{x \in \Gamma; T^{\Gamma}(x) \notin \mathcal{S}\}$ constructed away from the fire front

(Waterloo, 2011)

Optimality conditions, minimizing the value of burned area

1. A free arc $\ \Gamma$. The curvature must be proportional to the local value of the land

$$r(s) = \text{radius of curvature} \quad \alpha = \text{land value}$$

$$r(s) \cdot \alpha(\Gamma(s)) = \text{const.}$$

2. A single boundary arc Γ . The wall is constructed at maximum speed σ , always remaining at the edge of the burned set

$$\sigma \sin \beta = \max_{y \in F(x)} \mathbf{n} \cdot y$$

3. Two or more boundary arcs: $\Gamma_1, \ldots, \Gamma_{\nu}$, constructed simultaneously for $t \in [a, b]$

Sum of construction speeds $< \sigma$

At which speed should each wall be constructed ?

(Solution is found applying Pontryagin's Maximum Principle)

Value of Time

$$J(\Gamma) \doteq \alpha \cdot [\text{total burned area}] + \beta \cdot [\text{length of the curve}]$$

There exists a non-increasing scalar function $t \mapsto W(t)$

 \approx Lagrange multiplier corresponding to the constraint

$$m_1 \Biggl(\Gamma \cap \overline{R^\Gamma(t)} \Biggr) \ \le \ \sigma t$$

1. A free arc Γ_0 : $W(t) = (\alpha r - \beta)\sigma = \text{constant}$

r = radius of curvature

2. Two or more boundary arcs: $\Gamma_1, \ldots, \Gamma_{\nu}$, constructed simultaneously

$$W(t) = W_i(t) = \left(\frac{q_i(t)}{\cos\theta_i(t)} - \beta\right)\sigma$$

 $q = (q_1, q_2, \dots, q_{\nu}) =$ adjoint variable in the PMP.

Instantaneous value of time

- (')
- continuous at times where a free arc joins a boundary arc (tangentially)
- jumps down at times where two boundary arcs join together

Junctions between different arcs

Two boundary arcs originating at the same point are not optimal

Non-parallel junctions between a free arc and a boundary arc are not optimal

circle + two spirals

(is better than two spirals only)

Further classification

- blocking arcs $\Gamma^b \doteq \Gamma \cap \partial R^{\Gamma}_{\infty}$
- delaying arcs Γ^d

Necessary conditions for the optimality of delaying arcs (Tao Wang, 2010)

Sufficient conditions for optimality ?

Standard Isotropic Problem:

- Fire starts on the unit disc, propagating with unit speed in all directions.
- Barrier can be constructed at speed $\sigma > 2$.
- Minimize the total burned area.

Theorem (A.B. - T.Wang, 2010)

The barrier consisting of

circle + two logarithmic spirals

is optimal among all simple closed curves enclosing R_0

Symmetric rearrangement

$$\Omega = \left\{ (r\cos\theta, r\sin\theta); \ 0 \le r \le \rho(\theta) \right\}$$

$$\Omega^* = \left\{ (r\cos\theta, r\sin\theta); \ 0 \le r \le \tilde{\rho}^*(\theta) \right\},$$

 $\rho^*: [-\pi, \pi] \mapsto \mathbb{R}_+$ is the symmetric, nondecreasing rearrangement $r(\cdot)$.

$$\mathsf{meas}\Big(\{\theta\,;\ \ \rho^*(\theta)\ <\ c\}\Big)\ =\ \mathsf{meas}\Big(\{\theta\,;\ \ \rho(\theta)\ <\ c\}\Big)\qquad \mathsf{for\ all}\ c>0$$

Polar coordinate representation: $\theta \mapsto r(\theta)$ non-decreasing, for $\theta \in [0, \pi]$

Admissibility constraint:
$$m_1igg(\{x\in\Gamma\,;\;\;|x|\le 1+t\}igg)\le\sigma t$$

 $\mathsf{not} \ \mathsf{saturated} \ \Longrightarrow \mathsf{circumferences}$

saturated \implies logarithmic spirals

Numerical Simulations

Assume: only blocking arcs, no delaying arcs.

minimize total burned area: $m_2\left(R_{\infty}^{\Gamma}\right)$

subject to

$$m_1\left(\Gamma \cup \overline{R^\Gamma(t)}\right) \leq \sigma t$$
 for all $t \geq 0$

Approximate the barrier with a polygonal:

- fix an angle $\theta = 2\pi/n$
- assign radii $r_k = r(k\theta), \quad k = 1, \ldots, n$
- starting with an admissible polygonal, search for a local minimizer subject to admissibility constraints
- double number of nodes (replace n by 2n), repeat local minimization . . .

1. The isotropic case

 $F(x) = R_0 = B_1$ (unit disc), $\sigma = 4$. Minimize: total burned area.

2. A non-isotropic case

$$F = \left\{ (\lambda x, \lambda y); (x-3)^2 + y^2 \le 1, \lambda \in [0,1] \right\}$$

Choose: $\sigma = 4.1$, $R_0 = \text{unit disc.}$

Analytic solution: A.Friend (2007). Numerical solution: T.Wang (2008)

Some open problems

- 1 (Isotropic blocking problem). On the whole plane, assume:
- fire propagates with unit speed in all directions.

Conjecture 1: a blocking strategy exists if and only if the wall construction speed is $\sigma > 2$.

2 (Sufficient conditions). Not one single example is known where a blocking strategy can be proved to be optimal.

Conjecture 2: the "circle + two spirals" strategy is optimal for the isotropic problem.

Basic difficulty: delaying arcs

3 (Existence of optimal strategies). Determine whether an optimal strategy exists, in the general case where the velocity sets satisfy $0 \in F(x)$ but without assuming $B(0,\rho) \subset F(x)$ (so that fire propagation speed is not uniformly positive in all directions).

4 (Regularity). If the initial set R_0 has a smooth boundary and the cost functions are smooth, what is the regularity of an optimal strategy? Does it produce a finite number of piecewise \mathcal{C}^1 arcs? Is the optimal barrier connected? When is is useful to construct delaying arcs?

On the minimal speed for a blocking strategy

If Γ is a simple closed curve, then the construction speed must be $\sigma > 2$.

Indeed, let P= last brick of the wall. Then

$$m_1(\omega) < \frac{1}{2} m_1(\Gamma)$$

This estimate breaks down if Γ is not a simple closed curve.

Alternative blocking strategies

Construct first a partial barrier, to slow down fire propagation. Then build a wall enclosing the fire.

(unlikely to succeed, with speed $\sigma \leq 2$)