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A Differential Inclusion Model for Fire Propagation

RO

R(t) C R? = set reached by the fire at time t > 0

determined as the reachable set by a differential inclusion

x € F(x) x(0) € Ry C R?
Fire may spread in different directions with different velocities

R(t) = {x(t); x(+) absolutely continuous,

x(0) € Ry, x(7) € F(x(r)) forae. 7€, t]}
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Confinement Strategies

(A.B., J.Differential Equations, 2007)

Assume: a controller can construct a wall, i.e. a one-dimensional rectifiable
curve -y, which blocks the spreading of the fire.

7(t) C R? = portion of the wall constructed within time t

o = speed at which the wall is constructed

Definition 1. A set valued map t — 7(t) C R? is an admissible strategy if :
(H1) For every t; < t, one has v(t1) C v(t)

(H2) Each ~(t) is a rectifiable set (possibly not connected). lts length satisfies
m((t)) < ot
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Definition 2. The reachable set determined by the blocking strategy « is

RY(t) = {X(t); x(+) absolutely continuous, x(0) € Ry

x(r) € F(x(r)) fora.e. 7€l0,1t], x(1) & y(7) forall 7 €0, t] }

REMARK: Walls must be constructed in real time !
Y(©)

Y

An admissible strategy is described by a set-valued function t — v(t) C R?

~(t) = portion of the wall constructed within time ¢t
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Static vs. Dynamic Blocking Problems

Static problems

@ g
minimizing minimizing minimizing

enclosed area length area + length

Dynamic problem
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Optimal Confinement Strategies

A cost functional should take into account
- The value of the region destroyed by the fire.

- The cost of building the wall.

a(x) = value of a unit area of land around the point x

B(x) = cost of building a unit length of wall near the point x

COST FUNCTIONAL

t=eo | JRr(t) ~(t)
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Mathematical Problems

1. Blocking Problem.

Given an initial set Ry, a multifunction F and a wall construction speed o,
does there exist an admissible strategy t — (t) such that
the reachable sets R7(t) remain uniformly bounded for all t >0 ?

2. Optimization Problem.

Find an admissible strategy v € S which minimizes the cost functional

J(7)-
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(i) Existence of an optimal solution
(i) Necessary conditions for the optimality of an admissible strategy ~(+)
(iii) Regularity of the curves ~y(t) constructed by an optimal strategy

(iv) Sufficient conditions for the optimality of a strategy ~(-)

(v) Numerical computation of an optimal strategy
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Equivalent Formulation

(A.B. - T. Wang, Control Optim. Calc. Var. 2009)

Blocking Problems and Optimization Problems can be reformulated in terms of
one single rectifiable set I’

(strategy) t— (t) — r (single wall)

v() N r= <U fy(t)> \ <U R”(t)) (useful walls)

t>0 t>0

r — ~(t) =T NRM(t) (walls touched by the fire within time t)
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Complete strategies

A rectifiable set ' is complete if it contains all of its points of positive upper density:

X _ m (B(X, r)n r)
0" (I x) = Ilmsup% >0 = xel.
r—0+

R

N \

| —_—0
/ " incomplete - complete

The reachable sets for the differential inclusion

X € F(x) x(0) € Ro (DI)

without crossing I are
R"(t) = {x(t); x() absolutely continuous, x(0) € Ry
x(1) € F(x(r)) fora.e. T, x(1) ¢ T forall 7 €[0, t]}
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Admissible curves

The complete, rectifiable set I is admissible for the differential inclusion (DI) and
the construction speed o if, for every t > 0, the set

(1) =T NR(¢)

has total length  my(y(t)) < ot

~(t) = portion of I' that needs to be in place by time t
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Equivalent Formulations

Rl = U R"(t) = [total region burned by the fire]
>0

Blocking Problem 2: Find an admissible rectifiable set ' C R? such that the
corresponding reachable set R_ is bounded.

Optimization Problem 2: Find an admissible rectifiable set I € R? which

minimizes the cost
(= [
R

r
co

ozdmg—i—/ﬁdml
r
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Blocking the Fire

e Fire propagates in all directions with unit speed:  F(x) = B;

e Wall is constructed at speed o

On the entire plane, the fire can be blocked if o > 2, it cannot be blocked if o < 1.

Theorem (A.B., J.Differential Equations, 2007) J

Blocking Strategy: If o > 2, construct two arcs of logarithmic spirals along the edge of
the fire

’y(t);{(rﬂ); r=eM, 1§r§1+t}, N o1
0—2

G |
4
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When can the fire be blocked ?

Conjecture: Assume the fire propagates with speed 1 in all directions.
On the entire plane the fire can be blocked if and only if 0 > 2

wm‘\
Y (1)

o sinf =1

Single spiral strategy: curve closes on itself if and only if
o> ol =2.614430844 ... (M. Burago, 2006)
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Non-isotropic fire propagation

Assume : F:{(rcosﬁ, rsinf); Ogrgp(ﬁ)}

p(=0) = p(0), 0 < p(0) < p(6) forall 0<0<6¢ <.

Theorem. (A.B., M. Burago, A. Friend, J. Jou, Analysis and Applications, 2008)

If the wall construction speed satisfies

o > [vertical width of F] = 2 max_p(0)sin@
0€[0,7)

then, for every bounded initial set Ry, a blocking strategy exists
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The isotropic case on the half plane

e Fire propagates in all directions with unit speed. F(x) = B;

e Wall is constructed at speed o

Theorem. (A.B. - T.Wang, J.Math Anal.Appl. 2009)
Restricted to a half plane, the fire can be blocked if and only if o > 1 J

BLOCKING STRATEGY: If o > 1, the fire can be enclosed between
the horizontal axis and an arc of logarithmic spiral

A= l‘i{(r,ﬂ); r=e?, HE[O,W]}
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Regularity of the distance function

dk(x,y) = minimum length among all paths « : [0,1] — K joining x with y

Lemma. If K C R? is compact, simply connected, then the map y +— dk(x, y)
is C! in the interior of K \ {x}.

sup, yex di(x,y) is attained at boundary points.
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Estimates on the distance function

Assume: barrier [ is completed at time T >0

S = segment joining the points a, b

Any two points x,y € K can be connected by a path ,, of length

m1(y) < im1<FUS> < ;<0T+(b—a)> < oT
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Same conclusion in the case of several connected components

Any two points x, y € K can be connected by a path v,, of length

m1(Vxy) < ;m1<rU5> < ;<0T—|—(b—a)> < oT
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No strategy can block the fire if 0 <1

x = position of “last brick of the wall”

Fire reaches x and spreads outside, before time T when the barrier is completed

1
dk(x,y) < mg)}({ de(x,y) < Eml(I_US) < m(l) < oT
xe
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Existence of Optimal Strategies

Fire propagation: x € F(x) x(0) € Ro

Wall constraint: f,y(t) wdm <t (1/%(x) = construction speed at x)

Minimize: J(vy) = {fm(t)admz + f,y(t)ﬁdml}
Assumptions:

(A1) The initial set Ry is open and bounded. Its boundary satisfies my (ORy) = 0.

(A2) The multifunction F is Lipschitz continuous w.r.t. the Hausdorff distance.

For each x € R? the set F(x) is compact, convex, and contains a ball of
radius po > 0 centered at the origin.

(A3) For every x € R2 one has a(x) >0, 5(x) >0, and 9(x) > 1o > 0.
« is locally integrable, while 8 and v are both lower semicontinuous.
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Theorem (A.B. - C. De Lellis, Comm. Pure Appl. Math. 2008)

Assume (A1)-(A3), and inf,cs J(7) < 0.
Then the minimization problem admits an optimal solution v*.

Direct method: Consider a minimizing sequence of strategies v (+)
Define the optimal strategy v as a suitable limit.
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STEP 1: Replace the «,(-) by complete strategies ~5

m(B(x,r)NE)

0*(E,x) = limsup 5 (upper density)
rl0 r
Ta(t) = 7a(t) U {x €R?*; 0*(7a(t),x) > 0}, (1) = () 7a(s)

STEP 2: For each rational time 7, order the connected components of 7,(7)
according to decreasing length:

Zn,l > En,Z > Kn,B > 'Vn(t) = Yn,1 U Yn,2 U Yoz U---
Taking a subsequence, as n — co we can assume
C,i(T) = Li(T) Yn,i(T) = i(T) T€Q
We then define (1) = ~i(T).  Finally v*(-) = completion of ~(-).

i>1,4i(7)>0
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STEP 3: Lower semicontinuity of v, 5 imply

Ydm;p < Iiminf/ vdm <t / B dmy < Iiminf/ £ dmy
v+ (1) 0 Jy(t) v*(t) o0 Ja(t)

Hence the limit strategy ~y(-) is admissible.

t

STEP 4:

/ admy, < Iiminf/ o dmy
R (t) n—o00 Rn(t)

Claim: given y € RY"(t) and r > 0, for every n large: RY(t) N B(y,r) # 0

Given ¢ > 0, decompose:  7,(1) = U Ymi | Urn(m) U, (1)
i<is(r)

[large connected components] U [small connected components| U [debris]

m (vp(7)) <e mi (v, (7)) = O(1)
lim [maximum length of connected components in 7] =0

n—oo
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detours taken
around short walls

e Shift the trajectory x* so that it crosses an amount O(e) of debris (connected
components of 4//) for all n.

e Take detours of total length O(¢) to get around the small connected
components «/, and the debris.
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Total length of wall = O(1)

max length of each component = €

Given x(-), find a shifted trajectory x¥(-) so that

[total length of connected components of I crossed by xV(-)] < ¢

Lemma 1:  In case 2, this can be achieved by a shift |v| = O(¢)
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Lemma 2: Jy, J; edges of the unit square Q. For any p > 0 there exists £ > 0
such that:

If W C Q is a set with my(W) < k, then there is a set Ko C Jp

(i) m(Ko)>1—p,

(ii) For every x € Ky, the set J, of points y € J; for which the segment [x, y]
with endpoints x, y does not intersect W has measure my(J) > 1 — p.
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= - % segments

\../“\

e Construct a o-grid
e Replace trajectory by a polygonal Y
o If mi(v,U Q) > ko the square Q is black. Otherwise it is white.

e Construct polygonal detours around the black islands, with total length O(e)
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e Modify the trajectory Y™ inside white squares
so that the new polygonal Z does not cross any wall of v,
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Alternative approach: the minimum time function

(C.DelLellis & R.Robyr, 2010)

x € F(x) x(0) € Ry C R?

Assume: B(0, p) C F(x)

Minimum time function: T(x) = inf{t>0; xeR(t)}

is Lipschitz continuous and satisfies the Hamilton-Jacobi equation

H(x,VT(x))=0 a.e.

H — 1
(x,p) max, (v, p)
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The minimum time function with obstacle

r
R(®)
"
X R'(0)
Barrier: a complete, rectifiable set I C R?
Minimum time function with obstacle: T'(x) = inf{t>0; xecR'(t)}

R"(t) = set of points reached by F-trajectories which start in Ry
and do not cross [

Goal: characterize T' as the unique maximal subsolution to a H-J equation

Alberto Bressan (Penn State) Dynamic Blocking Problems Waterloo, 2( 32 / 57



A family S™ of subsolutions

Definition. A function u: R? — [0, 0] is in the set S if

e ueSBV (Du = Vu + Dtmpy 4 DCantery with  DCantory = Q)
e m(J,\T)=0 (Ju = set of jump points of u)

e u=0on Ry

o H(x,Vu(x)) <0 forae. x

Vu = absolutely continuous part of the distributional derivative Du.
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Theorem. (C.DeLellis & R.Robyr, 2010 - Archive Rat. Mech. Anal.)

Let I be a complete, rectifiable set. Then the minimum time function TT is
the unique maximal element of S'.

Corollary. (C.DelLellis & R.Robyr, 2010)

Consider the cost functions a > 0, 8 > 0, with « locally integrable and 3 lower
semicontinuous. Then there exist a blocking strategy ' which minimizes the cost
among all admissible ones.
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Proof of the Corollary. Take a minimizing sequence of admissible barriers I'j.

Consider the corresponding minimum time functions Tj = T'«

Using the Ambrosio-De Giorgi compactness theorem for SBV functions, one
obtains a convergent subsequence Ty — U, such that

e UeSBV

e the jump set Jy is a rectifiable set, and

Ppdmy < I|m|nf Pvdm; < t.

Ju k—o0 Jr,

Hence I = [completion of Jy] is an admissible barrier.

admy, < liminf a dms admy, < liminf [ adm;
RT k—o00 R& r k—oo Jr,
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Necessary conditions for optimality

Problem: find an admissible barrier ' which minimizes

J(T) = «- [total burned area] + § - [length of the curve]

GOAL: derive a set of ODE's describing the walls built by an optimal strategy

e A.B., J.Differential Equations, 2007
e A.B. - T.Wang, ESAIM, Control Optim. Calc. Var. 2010

e T.Wang, Intern. J. Control, to appear.
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Classification of arcs in an optimal strategy

Minimum time function ~ T'(x) = inf {t >0; x¢€ Rr(t)}

Set of times where the constraint is saturated

S;{tZO; meas(FﬁRr(t)> = O't}

Boundary arcs: [s={xel; T'(x)eS}
constructed along the advancing fire front

Freearcs: [r={xel; T'(x)¢S}
constructed away from the fire front
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Optimality conditions, minimizing the value of burned area

1. A free arc I. The curvature must be proportional to the local value of the
land
r(s) = radius of curvature « = land value

2. A single boundary arc . The wall is constructed at maximum speed o,
always remaining at the edge of the burned set

ocsinf = max n-
P yEF(x) Y
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3. Two or more boundary arcs: [I,...,I,, constructed simultaneously for
t € la,b]

Sum of construction speeds < o

At which speed should each wall be constructed ?

(Solution is found applying Pontryagin's Maximum Principle)
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Value of Time

J(I) = «-[total burned area] + 3 - [length of the curve]

There exists a non-increasing scalar function t — W(t)

~ Lagrange multiplier corresponding to the constraint

m1<l'ﬂR"(t)> < ot
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1. A free arc T: W(t) = (ar —p)o = constant

r = radius of curvature

2. Two or more boundary arcs: I,...,[,, constructed simultaneously

W) = wie) = (205 5)o

g = (91,92,...,q,) = adjoint variable in the PMP.
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Instantaneous value of time
W

constructing constructing

free ares ! boundary arcs

t — W(t) is non-increasing

- continuous at times where a free arc joins a boundary arc (tangentially)

- jumps down at times where two boundary arcs join together

*

T
/\el Lo E’ZF\\ /{"}A
Xy
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Junctions

Non-parallel junctions between a free arc and a boundary arc are not optimal
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circle + two spirals

(is better than two spirals only)
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Further classification

e blocking arcs ® = FNAR’,

e delaying arcs ¢

Necessary conditions for the optimality of delaying arcs
(Tao Wang, 2010)
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Sufficient conditions for optimality ?

Standard Isotropic Problem:

e Fire starts on the unit disc, propagating with unit speed in all directions.

e Barrier can be constructed at speed o > 2.
e Minimize the total burned area.

Theorem (A.B. - T.Wang, 2010)

The barrier consisting of

circle + two logarithmic spirals
is optimal among all simple closed curves enclosing Ry

Alberto Bressan (Penn State) Dynamic Blocking Problems
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original curve

symmetric, nondecreasing
rearrangement
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Symmetric rearrangement

Q = {(rcos&,rsinﬁ); 0 <r< p(H)}

Q= {(rcos&,rsin@); 0<r< ﬁ*(@)},

p* i [-m,m] = Ry is the symmetric, nondecreasing rearrangement r(-).

meas({@; pr(0) < c}) = meas({@; p(0) < c}) forall ¢ >0
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Polar coordinate representation: 6 — r(6) non-decreasing, for 6 € [0, 7]

Admissibility constraint: m{xel; |x<1+t}]| <ot

not saturated — circumferences

saturated = logarithmic spirals
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Numerical Simulations

(A.B. - T. Wang, ESAIM; Control Optim. Calc. Var. 2009)

Assume: only blocking arcs, no delaying arcs.

minimize total burned area: mz(Rgo)

subject to

m (F U Rr(t)> < ot forall t>0
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Approximate the barrier with a polygonal:
e fix an angle 8 = 27/n
e assign radii ry = r(kf), k=1,...,n

e starting with an admissible polygonal, search for a local minimizer
subject to admissibility constraints

e double number of nodes (replace n by 2n), repeat local minimization ...
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1. The isotropic case

F(x) = Ry = By (unit disc), o = 4. Minimize: total burned area.
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2. A non-isotropic case

F = {(AX,Ay); (x=3+y*<1, Xe [071]}

y F "
r=1 ) _— )
. Ji

Choose: 0 = 4.1, Ry = unit disc.

Analytic solution: A.Friend (2007). Numerical solution: T.Wang (2008)
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Some open problems

1 (Isotropic blocking problem). On the whole plane, assume:
e fire propagates with unit speed in all directions.

Conjecture 1: a blocking strategy exists if and only if the wall construction
speed is 0 > 2.

2 (Sufficient conditions). Not one single example is known where a blocking
strategy can be proved to be optimal.

Conjecture 2: the “circle + two spirals”’ strategy is optimal for the isotropic

problem.

Basic difficulty: delaying arcs
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3 (Existence of optimal strategies). Determine whether an optimal
strategy exists, in the general case where the velocity sets satisfy 0 € F(x)
but without assuming B(0, p) C F(x)

(so that fire propagation speed is not uniformly positive in all directions).

4 (Regularity). If the initial set Ry has a smooth boundary and the cost
functions are smooth, what is the regularity of an optimal strategy ?
Does it produce a finite number of piecewise C* arcs ?

Is the optimal barrier connected 7

When is is useful to construct delaying arcs ?
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On the minimal speed for a blocking strategy

If I is a simple closed curve, then the construction speed must be o > 2.
Indeed, let P= last brick of the wall. Then

ml(w) < %ml(r)

This estimate breaks down if I is not a simple closed curve.
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Alternative blocking strategies

Construct first a partial barrier, to slow down fire propagation. Then build
a wall enclosing the fire.

(unlikely to succeed, with speed o < 2)
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