Controlling Mechanical Systems by Active Constraints

Alberto Bressan

Department of Mathematics, Penn State University

Control of Mechanical Systems: Two approaches

• by applying external forces

• by directly assigning some of the coordinates, as functions of time

Riding on a Swing

1. An external force pushing:

$$\ddot{\theta} = -\sin\theta + u(t)$$

 $t\mapsto u(t)$ is the force, used to control the motion of the swing

2. Changing the position of the barycenter:

 $r={
m radius}$ of oscillation

$$\theta = angle$$

Assign the radius directly as function of time r = u(t)

$$\ddot{\theta} = -\frac{\sin\theta}{u} - \frac{2\dot{\theta}}{u}\dot{u}$$

Skier on a narrow trail

 $s={
m arc}$ length parameter along trail

h= height of barycenter, along perpendicular line

Assign the height h=u(t) as a function of time

 \Longrightarrow the motion $t\mapsto s(t)$ along the trail is uniquely determined

Pendulum with fixed length and oscillating pivot

For $0<\theta<\frac{\pi}{2}$ the pendulum can be stabilized by **vertical** oscillations of the pivot For $\frac{\pi}{2}<\theta<\pi$ the pendulum can be stabilized by **horizontal** oscillations

Swim-like motion in a perfect fluid

Consider:

- a deformable body whose *shape* and *internal mass distribution* are described by finitely many parameters
- immersed in a perfect fluid: incompressible, inviscid, irrotational

Assign some of these parameters as functions of time

⇒ determine the motion

Example (Kozlov & al., 2000 - 2003)

A point mass moving inside a rigid shell, immersed in a perfect fluid.

Assign the relative position of the point mass: $P=u(t)\in I\!\!R^2$

Controlling a Lagrangian system by applying external forces

Lagrangian variables: q^1, \ldots, q^N

Kinetic energy:
$$\mathcal{T}(q,\dot{q}) = \frac{1}{2} \sum_{i,j=1}^{N} g_{ij}(q) \dot{q}^i \dot{q}^j$$

Equations of motion:

$$\frac{d}{dt}\frac{\partial \mathcal{T}}{\partial \dot{q}^i} - \frac{\partial \mathcal{T}}{\partial q^i} = \phi_i(q, u(t)) \qquad i = 1, \dots, N$$

 $t \mapsto u(t) = \text{control function}$

 $\phi_i(q,u) = \text{components of the external forces}$

Controlling a Lagrangian system by assigning some of the coordinates as functions of time

Split the coordinates in two groups:

$$q^1, \ldots, q^n, \qquad q^{n+1}, \ldots, q^{n+m}$$

Assign the last m coordinates directly as functions of time

$$q^{n+\alpha} = u_{\alpha}(t) \qquad \qquad \alpha = 1, \dots, m \tag{C}$$

Find the evolution of the first n coordinates q^1, \ldots, q^n

Splitting of coordinates determines a **foliation**: $\mathcal{F} = \{\Lambda_u : u \in \mathbb{R}^m\}$

Each **leaf** is a submanifold: $\Lambda_u = \left\{ (q^1, \dots, q^n, q^{n+1}, \dots, q^{n+m}); \quad q^{n+\alpha} = u_\alpha \right\}$

At each time t, the assignment

$$q^{n+\alpha} = u_{\alpha}(t) \qquad \qquad \alpha = 1, \dots, m \tag{C}$$

determines on which leaf the system is located

BASIC ASSUMPTION: the identities (C) are implemented by means of

FRICTIONLESS CONSTRAINTS

the force Φ used to implement the constraints is always **perpendicular to the leaves** Λ_u (w.r.t. the metric given by the kinetic energy)

Main literature:

Aldo Bressan, Hyper-impulsive motions and controllizable coordinates for Lagrangean systems *Atti Accad. Naz. Lincei*, Memorie, **8-19** (1990), 197–246.

C. Marle, Géométrie des systèmes mécaniques à liaisons actives, in *Symplectic Geometry and Mathematical Physics*, 260–287, P. Donato, C. Duval, J. Elhadad, and G. M. Tuynman Eds., Birkhäuser, Boston, 1991.

Mechanical applications:

Aldo Bressan, On some control problems concerning the ski or swing, *Atti Accad. Naz. Lincei, Memorie,* **9-1** (1991), 147-196.

Geometric structure:

- F. Rampazzo, On the Riemannian structure of a Lagrangian system and the problem of adding time-dependent coordinates as controls. European J. Mechanics A/Solids 10 (1991), 405-431.
- F. Cardin and M. Favretti, Hyper-impulsive motion on manifolds. *Dynam. Contin. Discr. Impuls. Syst.* **4** (1998), 1-21.

Analytical study of the impulsive O.D.E's:

- A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls, *Boll. Un. Matem. Italiana* **2-B**, (1988), 641-656.
- A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields, *J. Optim. Theory & Appl.* **71** (1991), 67-84.
- A. Bressan and F. Rampazzo, On systems with quadratic impulses and their application to Lagrangean mechanics, *SIAM J. Control Optim.* **31** (1993), 1205-1220.

Controllability properties

- J. Baillieul, The Geometry of Controlled Mechanical Systems, in *Mathematical Control Theory*, J.Baillieul & J.C. Willems, Eds., Springer-Verlag, New York, 1998, 322-354.
- A. Bressan and F. Rampazzo, Stabilization of Lagrangian systems by moving coordinates, *Arch. Rational Mech. Anal.* **196** (2010), 97-141.
- A. Bressan and Z. Wang, On the controllability of Lagrangian systems by active constraints, *J. Differential Equations*, **247** (2009), 543–563.

Equations of motion (without additional forces)

Hamiltonian:
$$H(q,p) = \frac{1}{2} \sum_{i,j=1}^{n+m} g^{ij}(q) p_i p_j$$

conjugate momenta:
$$p_i = \frac{\partial T}{\partial \dot{q}^i} = \sum_{j=1}^{n+m} g_{ij}(q) \dot{q}^j,$$
 $(g^{ij}) = (g_{ij})^{-1}$

$$\left\{ egin{array}{ll} \dot{q}^i &=& rac{\partial H}{\partial p_i} \ \dot{p}_i &=& -rac{\partial H}{\partial q^i} \end{array}
ight. \qquad i=1,\ldots,n$$

$$\begin{cases}
\dot{q}^{n+\alpha} = \frac{\partial H}{\partial p_{n+\alpha}} \\
\dot{p}_{n+\alpha} = -\frac{\partial H}{\partial q^{n+\alpha}} + \Phi_{\alpha}(t)
\end{cases}$$

$$\alpha = 1, \dots, m$$

For $\alpha = 1, ..., m$, the components of the forces $\Phi_{\alpha}(t)$ produced by the constraints must be determined so that $q^{n+\alpha}(t) = u_{\alpha}(t)$

$$\left\{ egin{array}{ll} \dot{q}^i &=& rac{\partial H}{\partial p_i}(q,p) \ \dot{p}_i &=& -rac{\partial H}{\partial q^i}(q,p) \end{array}
ight. \qquad i=1,\ldots,n$$

Solve for $q^1, \ldots, q^n, p_1, \ldots, p_n$, inserting the values

$$\begin{cases} q^{n+\alpha} = u_{\alpha}(t) & \dot{q}^{n+\alpha} = \dot{u}_{\alpha}(t) \\ p_{n+\alpha} = p_{n+\alpha}(p_1, \dots, p_n, \dot{q}^{n+1}, \dots, \dot{q}^{n+m}) \end{cases} \qquad \alpha = 1, \dots, m$$

Analytic form of the equations

Kinetic energy matrix:
$$G = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix} = \begin{pmatrix} (g_{ij}) & (g_{i,n+\beta}) \\ (g_{n+\alpha,j}) & (g_{n+\alpha,n+\beta}) \end{pmatrix}$$

$$A = (a^{ij}) \doteq (G_{11})^{-1}, \qquad K = (k_{\alpha}^{i}) \doteq -AG_{12}, \qquad B = (b_{\alpha,\beta}) \doteq G_{22} - G_{21}AG_{12}$$

Equations of motion for the free variables $q=(q^1,\ldots,q^n)$, $p=(p_1,\ldots,p_n)$

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} Ap \\ -\frac{1}{2}p^{\dagger}\frac{\partial A}{\partial q}p + F \end{pmatrix} + \begin{pmatrix} K \\ -p\frac{\partial K}{\partial q} \end{pmatrix} \dot{u} + \dot{u}^{\dagger} \begin{pmatrix} 0 \\ \frac{1}{2}\frac{\partial B}{\partial q} \end{pmatrix} \dot{u},$$

$$u = (u_1, \dots, u_m) = \text{control function}$$
 $F = \text{additional forces}$

No need to explicitly compute the forces Φ_{α} produced by the constraints!

Classification

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} Ap \\ -\frac{1}{2}p^{\dagger}\frac{\partial A}{\partial q}p \end{pmatrix} + \begin{pmatrix} K \\ -p\frac{\partial K}{\partial q} \end{pmatrix} \dot{u} + \dot{u}^{\dagger} \begin{pmatrix} 0 \\ \frac{1}{2}\frac{\partial B}{\partial q} \end{pmatrix} \dot{u},$$

1. General form: quadratic w.r.t. \dot{u}

Possible input functions:

 $u(\cdot) \in W^{1,2} = \{ \text{absolutely continuous functions with } \dot{u} \in \mathbf{L}^2 \}$

2. Fit for jumps: affine w.r.t. \dot{u} , if $\partial B/\partial q \equiv 0$

Possible input functions:

 $u(\cdot) \in BV = \{\text{functions with bounded variation}\}\$

(assigning the path taken by the control across each jump)

3. Strongly fit for jumps: $\dot{x} = f(x, u)$ (with a suitable choice of coordinates)

Relevant Problems

- 1. Understand the relations between
- analytic form of the equation
- geometric properties of the foliation
- topologies that render continuous the "control-to-trajectory" map $u(\cdot) \mapsto q(\cdot)$
- 2. Representation of the dynamics in terms of a differential inclusion. Approximation with smooth controls.
- **3.** Stabilization at a point \bar{q} , or around a periodic orbit.
- 4. Optimization problems

Equivalent properties

- The hyper-impulsive system is **fit for jumps**, namely $\partial B/\partial q \equiv 0$ and the equations are affine w.r.t. \dot{u} .
- The foliation $\{\Lambda_u; u \in \mathbb{R}^m\}$ is **bundle like**, i.e. leaves remain at constant distance from each other (B. Reinhart, *Ann. Math.* 1959).
- ullet Any geodesic γ that starts perpendicularly to one of the leaves, remains perpendicular to every other leaf it meets.

Controlling a general system (not fit for jumps)

Interplay between linear and quadratic terms:

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} Ap \\ -\frac{1}{2}p^{\dagger}\frac{\partial A}{\partial q}p + F \end{pmatrix} + \begin{pmatrix} K \\ -p\frac{\partial K}{\partial q} \end{pmatrix} \dot{u} + \dot{u}^{\dagger} \begin{pmatrix} 0 \\ \frac{1}{2}\frac{\partial B}{\partial q} \end{pmatrix} \dot{u}, \qquad (1)$$

Reduced dynamics (neglecting linear terms):

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} \in \begin{pmatrix} Ap \\ -\frac{1}{2}p^{\dagger}\frac{\partial A}{\partial q}p + F \end{pmatrix} + \mathcal{V}, \qquad \qquad \mathcal{V} \doteq \overline{co} \left\{ w^{\dagger} \begin{pmatrix} 0 \\ \frac{\partial B}{\partial q} \end{pmatrix} w; \quad w \in \mathbb{R}^{m} \right\}$$
(2)

V =cone of impulses generated by control vibrations

Theorem (A.B. - F. Rampazzo). Every trajectory of (2) can be uniformly approximated by trajectories of (1)

A first order reduction (slow dynamics: $p \approx 0$)

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} Ap \\ -\frac{1}{2}p^{\dagger}\frac{\partial A}{\partial q}p \end{pmatrix} + \begin{pmatrix} K \\ -p^{\dagger}\frac{\partial K}{\partial q} \end{pmatrix} \dot{u} + \dot{u}^{\dagger} \begin{pmatrix} 0 \\ \frac{1}{2}\frac{\partial B}{\partial q} \end{pmatrix} \dot{u}$$
(1)

$$\dot{q} \in K(q, u)\dot{u} + \Gamma(q, u), \qquad (q, u)(0) = (\bar{q}, \bar{u})$$
 (2)

$$\Gamma(q,u) \doteq \overline{co} \left\{ A(q,u) \left(w^{\dagger} \frac{\partial B}{\partial q}(q,u) w \right); w \in \mathbb{R}^m \right\} = A \mathcal{V}$$

Theorem (A.B. - Z.Wang, 2008). Let $t \mapsto (q^*(t), u^*(t)) \in \mathbb{R}^{n+m}$ be a trajectory of the differential inclusion (2), defined for $t \in [0, 1]$.

For every $\varepsilon > 0$, there exists a smooth control $u(\cdot)$ defined on some interval [0,T] such that then the corresponding solution of (1) with initial data

$$(q, u)(0) = (q^*(0), u^*(0)), p(0) = 0$$

satisfies

$$\sup_{t \in [0,T]} |p(t)| < \varepsilon, \qquad \sup_{t \in [0,T]} |q(t) - q^*(\psi(t))| < \varepsilon, \qquad \sup_{t \in [0,T]} |u(t) - u^*(\psi(t))| < \varepsilon,$$

for some increasing diffeomorphism $\psi:[0,T]\mapsto[0,1]$

Example: bead sliding without friction along a rotating bar

$$q(t) = r = \text{radius}$$
 $u(t) = \theta = \text{controlled angle}$

$$T(r,\theta,\dot{r},\dot{\theta}) = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2) \qquad p = \frac{\partial T}{\partial \dot{r}} = m\dot{r} \qquad \begin{cases} \dot{r} = p/m, \\ \dot{p} = mr\dot{u}^2. \end{cases}$$

Every solution $t \mapsto (r^*(t), \theta^*(t))$ of the differential inclusion $\dot{r}^*(t) \ge 0$ can be traced by a solution of the original system, starting at rest.

Locomotion in a Perfect Fluid

 $q=(q^1,\ldots,q^N)=$ Lagrangian parameters, describing the position, mass distribution and shape of the body

 $\xi \mapsto \Phi^q(\xi)$ is a volume preserving diffeomorphism

 Ω = reference configuration. $\Phi^{q(t)}(\Omega)$ = region occupied by the body at time t.

For n+m=N, we assign the last m coordinates as functions of time, by means of **frictionless constraints**

$$q^{n+\alpha} = u_{\alpha}(t) \qquad \qquad \alpha = 1, \dots, m$$

PROBLEM: Assuming that no other forces are present, describe the motion of the first n (uncontrolled) coordinates q^1, \ldots, q^n and of the surrounding fluid.

Kinetic energy of the body:
$$\mathcal{T}^{\mathsf{body}}(q,\dot{q}) = \sum_{i,j=1}^N G_{ij}(q)\dot{q}^i\dot{q}^j$$

Kinetic energy of the surrounding fluid:
$$\mathcal{T}^{\text{fluid}} = \int_{\mathbb{R}^d \setminus \Phi^q(\Omega)} \frac{|v(x)|^2}{2} \, dx$$

v = v(x) the velocity of the fluid at the point x

Key fact: for an incompressible, non-viscous, irrotational fluid, the velocity v is entirely determined by the finitely many parameters q, \dot{q} .

Kinetic energy of the fluid:
$$\mathcal{T}^{\mathsf{fluid}}(q,\dot{q}) = \sum_{i,j=1}^N \widetilde{G}_{ij}(q) \dot{q}^i \dot{q}^j$$

The previous theory applies, with $\mathcal{T} = \mathcal{T}^{\text{body}} + \mathcal{T}^{\text{fluid}}$

Euler equations + incompressibility condition

$$v_t + v \cdot \nabla v = -\nabla p$$
 div $v \equiv 0$

Assume: motion in $I\!\!R^2$, zero vorticity, zero circulation

Claim: velocity of the surrounding fluid is entirely determined by q,\dot{q}

Given q,\dot{q} , we seek the unique irrotational velocity field $v=v^{(q,\dot{q})}$ defined on $I\!\!R^2\setminus\Phi^q(\Omega)$ such that

$$\left\langle v(\Phi^q(\xi)), \mathbf{n}^q(\xi) \right\rangle = \left\langle \sum_{i=1}^N \frac{\partial}{\partial q^i} \Phi^q(\xi) \cdot \dot{q}^i, \mathbf{n}^q(\xi) \right\rangle$$

For $i \in \{1, \dots, N\}$, $\gamma_i = \nabla \psi_i$, solve the Neumann problem in the exterior domain

$$\Delta \psi_i = 0 \qquad x \in \mathbb{R}^2 \setminus \Phi^q(\Omega)$$
$$\mathbf{n} \cdot \nabla \psi_i = \mathbf{n} \cdot \frac{\partial \Phi^q}{\partial q^i} \qquad x \in \partial \Phi^q(\Omega)$$

with $\psi_i(x) \to 0$ as $|x| \to \infty$

$$v(x) = \sum_{i=1}^{N} \gamma_i^{(q)}(x) \cdot \dot{q}^i$$

$$\int_{\mathbb{R}^2 \setminus \Phi^q(\Omega)} \frac{|v(x)|^2}{2} dx = \sum_{i,j=1}^N \widetilde{G}_{ij}(q) \dot{q}^i \dot{q}^j$$

ullet Computation of the coefficients $\widetilde{G}_{ij}(q)$ may be hard !

Approximate expansion: C.Grotta Ragazzo, SIAM J. Appl. Math., 2003.

Symmetries

distance between leaves is constant \iff fit for jumps

Theorem (A.Arsie, 2008). Assume: there exists a symmetry group \mathcal{G} whose orbits are the leaves Λ_u , and which preserves the metric g_{ij} .

Then the system is fit for jumps

Geometry of swim-like motion

Take $\mathcal{G} = \text{group of translations}$ and rigid rotations

Variable splitting: $q = (q^1, \dots, q^n, q^{n+1}, \dots, q^m)$

- If the controlled variables q^{n+1}, \ldots, q^{n+m} entirely determine the shape of the body and the distribution of masses, up to a translation and a rigid rotation, then the system [body + surrounding fluid] is **fit for jumps**
- In general, if the controlled variables q^{n+1}, \ldots, q^{n+m} do not entirely determine the shape of the body, then the system [body + surrounding fluid] is **not fit for jumps**
- in the presence of freely flapping fins
- two or more swimmers

Snake-like chain immersed in a perfect fluid

Angles α, β are assigned as functions of time

- System is fit for jumps
- Completely controllable

Additional non-holonomic constraints

(A.B. - F.Rampazzo - K.Han, 2010)

$$q = (q^1, \dots, q^n, q^{n+1}, \dots, q^{n+m})$$

active constraints: $q^{n+\alpha} = u_{\alpha}(t)$, $\alpha = 1, ..., m$

additional non-holonomic constraints: $\sum_{i=1}^{n+m} \omega_{ki}(q) \, \dot{q}^i = 0$ $k = 1, \ldots, \nu$

- equations of motion
- \bullet geometric structure \iff fit for jumps

 ${\cal M}$ a Riemann manifold with metric corresponding to the kinetic energy

$$\mathcal{T}(q,\dot{q}) = \sum_{ij} g_{ij}(q) \, \dot{q}^i \dot{q}^j$$

 $\Gamma=$ non-integrable distribution describing the non-holonomic constraint

Definition. A Γ -geodesic is a solution to

$$\frac{d}{dt}\frac{\partial \mathcal{T}}{\partial \dot{q}} - \frac{\partial \mathcal{T}}{\partial q} \in \Gamma^{ker} \qquad \dot{q} \in \Gamma$$

i.e., a trajectory of the system with constraints, without external forces

 Δ = integrable distribution tangent to the foliation

 $\Gamma=$ non-integrable distribution describing the non-holonomic constraint

Theorem (A.B. - F.Rampazzo, 2010)

The system is fit for jumps if and only if the orthogonal bundle $(\Delta \cap \Gamma)^{\perp}$ is Γ -geodesically invariant