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Control of Mechanical Systems: Two approaches

• by applying external forces

• by directly assigning some of the coordinates, as functions of time
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Riding on a Swing

r

θθ

1. An external force pushing:

θ̈ = − sin θ+ u(t)

t 7→ u(t) is the force, used to control the motion of the swing

2. Changing the position of the barycenter:

r = radius of oscillation θ = angle

Assign the radius directly as function of time r = u(t)

θ̈ = −
sin θ

u
−

2θ̇

u
u̇ .
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Skier on a narrow trail

θ

h

H(s)

s

s = arc length parameter along trail

h= height of barycenter, along perpendicular line

Assign the height h = u(t) as a function of time

=⇒ the motion t 7→ s(t) along the trail is uniquely determined
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Pendulum with fixed length and oscillating pivot

θ

g

g

θ

For 0 < θ < π
2
the pendulum can be stabilized by vertical oscillations of the pivot

For π
2
< θ < π the pendulum can be stabilized by horizontal oscillations
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Swim-like motion in a perfect fluid

Consider:

• a deformable body whose shape and internal mass distribution are described
by finitely many parameters

• immersed in a perfect fluid: incompressible, inviscid, irrotational

Assign some of these parameters as functions of time

=⇒ determine the motion
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Example (Kozlov & al., 2000 - 2003)

A point mass moving inside a rigid shell, immersed in a perfect fluid.

Assign the relative position of the point mass: P = u(t) ∈ IR2

P

7



Controlling a Lagrangian system by applying external forces

Lagrangian variables: q1, . . . , qN

Kinetic energy: T (q, q̇) =
1

2

N∑

i,j=1

gij(q)q̇
iq̇j

Equations of motion:

d

dt

∂T

∂q̇i
−
∂T

∂qi
= φi(q, u(t)) i = 1, . . . , N

t 7→ u(t) = control function

φi(q, u) = components of the external forces
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Controlling a Lagrangian system by assigning
some of the coordinates as functions of time

Split the coordinates in two groups:

q1, . . . , qn, qn+1, . . . , qn+m

Assign the last m coordinates directly as functions of time

qn+α = uα(t) α = 1, . . . ,m (C)

Find the evolution of the first n coordinates q1, . . . , qn

Splitting of coordinates determines a foliation: F = {Λu ; u ∈ IRm}

Each leaf is a submanifold: Λu =
{
(q1, . . . , qn, qn+1, . . . , qn+m) ; qn+α = uα

}
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At each time t, the assignment

qn+α = uα(t) α = 1, . . . ,m (C)

determines on which leaf the system is located

BASIC ASSUMPTION: the identities (C) are implemented by means of

FRICTIONLESS CONSTRAINTS

the force Φ used to implement the constraints is always
perpendicular to the leaves Λu (w.r.t. the metric given by the kinetic energy)

Φ
Λu

u~
Λ
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Equations of motion (without additional forces)

Hamiltonian: H(q, p) =
1

2

n+m∑

i,j=1

gij(q)pipj

conjugate momenta: pi =
∂T

∂q̇i
=

n+m∑

j=1

gij(q)q̇
j, (gij) = (gij)

−1





q̇i = ∂H
∂pi

ṗi = − ∂H
∂qi

i = 1, . . . , n






q̇n+α = ∂H
∂pn+α

ṗn+α = − ∂H
∂qn+α

+Φα(t)
α = 1, . . . ,m

For α = 1, . . . ,m, the components of the forces Φα(t) produced by the constraints
must be determined so that qn+α(t) = uα(t)
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variables:
q1 . . . qn

p1 . . . pn

qn+1 . . . qn+m

pn+1 . . . pn+m

{
q̇i = ∂H

∂pi
(q, p)

ṗi = − ∂H
∂qi

(q, p)
i = 1, . . . , n

Solve for q1, . . . , qn, p1, . . . , pn, inserting the values





qn+α = uα(t) q̇n+α = u̇α(t)

pn+α = pn+α(p1, . . . , pn, q̇
n+1, . . . , q̇n+m)

α = 1, . . . ,m
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Analytic form of the equations

Kinetic energy matrix: G=

(
G11 G12

G21 G22

)
=

(
(gij) (gi,n+β)

(gn+α,j) (gn+α, n+β)

)

A =
(
aij

) .
= (G11)

−1 , K =
(
kiα

) .
= −AG12 , B =

(
bα,β

) .
= G22 −G21AG12

Equations of motion for the free variables q = (q1, . . . , qn), p = (p1, . . . , pn)




q̇

ṗ


 =




Ap

−1
2
p†∂A

∂q
p+ F


+




K

−p∂K
∂q


 u̇ + u̇†




0

1
2
∂B
∂q


 u̇ ,

u = (u1, . . . , um) = control function F = additional forces

No need to explicitly compute the forces Φα produced by the constraints !
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Classification




q̇

ṗ


 =




Ap

−1
2
p†∂A

∂q
p


+




K

−p∂K
∂q


 u̇ + u̇†




0

1
2
∂B
∂q


 u̇ ,

1. General form: quadratic w.r.t. u̇

Possible input functions:

u(·) ∈W 1,2 = {absolutely continuous functions with u̇ ∈ L
2}

2. Fit for jumps: affine w.r.t. u̇, if ∂B/∂q ≡ 0

Possible input functions:

u(·) ∈ BV = {functions with bounded variation}

(assigning the path taken by the control across each jump)

3. Strongly fit for jumps: ẋ = f(x, u) (with a suitable choice of coordinates)
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Relevant Problems

1. Understand the relations between

• analytic form of the equation

• geometric properties of the foliation

• topologies that render continuous the “control-to-trajectory” map u(·) 7→ q(·)

2. Representation of the dynamics in terms of a differential inclusion.
Approximation with smooth controls.

3. Stabilization at a point q̄, or around a periodic orbit.

4. Optimization problems

17



Equivalent properties

• The hyper-impulsive system is fit for jumps, namely ∂B/∂q ≡ 0 and the
equations are affine w.r.t. u̇.

• The foliation {Λu ; u ∈ IRm} is bundle like, i.e. leaves remain at constant
distance from each other (B. Reinhart, Ann. Math. 1959).

• Any geodesic γ that starts perpendicularly to one of the leaves, remains per-
pendicular to every other leaf it meets.

not fit for jumps

γ

Λu

γ

Λ u

fit for jumps
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Controlling a general system (not fit for jumps)

Interplay between linear and quadratic terms:




q̇

ṗ


 =




Ap

−1
2
p†∂A

∂q
p+ F


+




K

−p∂K
∂q


 u̇ + u̇†




0

1
2
∂B
∂q


 u̇ , (1)

Reduced dynamics (neglecting linear terms):



q̇

ṗ



 ∈




Ap

−1
2
p†∂A

∂q
p+ F



+ V , V
.
= co



w

†




0

∂B
∂q



w ; w ∈ IRm




(2)

V = cone of impulses generated by control vibrations

Theorem (A.B. - F. Rampazzo). Every trajectory of (2) can be uniformly
approximated by trajectories of (1)
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A first order reduction (slow dynamics: p ≈ 0)




q̇

ṗ



 =




Ap

−1
2
p†∂A

∂q
p



+




K

−p†∂K
∂q



 u̇ + u̇†




0

1
2
∂B
∂q



 u̇ (1)

q̇ ∈ K(q, u)u̇+Γ(q, u) , (q, u)(0) = (q̄, ū) (2)

Γ(q, u)
.
= co

{
A(q, u)

(
w†∂B

∂q
(q, u)w

)
; w ∈ IRm

}
= AV

Theorem (A.B. - Z.Wang, 2008). Let t 7→ (q∗(t), u∗(t)) ∈ IRn+m be a trajectory
of the differential inclusion (2), defined for t ∈ [0,1].

For every ε > 0, there exists a smooth control u(·) defined on some interval [0, T ]
such that then the corresponding solution of (1) with initial data

(q, u)(0) = (q∗(0), u∗(0)), p(0) = 0

satisfies

sup
t∈[0,T ]

|p(t)| < ε, sup
t∈[0,T ]

|q(t)− q∗(ψ(t))| < ε, sup
t∈[0,T ]

|u(t)− u∗(ψ(t))| < ε,

for some increasing diffeomorphism ψ : [0, T ] 7→ [0,1]
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Example: bead sliding without friction along a rotating bar

q(t) = r = radius u(t) = θ = controlled angle

T(r, θ, ṙ, θ̇) =
m

2
(ṙ2 + r2θ̇2) p =

∂T

∂ṙ
= mṙ

{
ṙ = p/m ,
ṗ = mru̇2 .

Every solution t 7→ (r∗(t), θ∗(t)) of the differential inclusion ṙ∗(t) ≥ 0

can be traced by a solution of the original system, starting at rest.

θ

O

r

θ

(r,  )θ

B

A
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Locomotion in a Perfect Fluid

q = (q1, . . . , qN) = Lagrangian parameters, describing the position,
mass distribution and shape of the body

ξ 7→ Φq(ξ) is a volume preserving diffeomorphism

Ω = reference configuration. Φq(t)(Ω) = region occupied by the body at time t.

Ω

b θ

Φ (Ω)
q

For n+m = N , we assign the last m coordinates as functions of time, by means
of frictionless constraints

qn+α = uα(t) α = 1, . . . ,m

PROBLEM: Assuming that no other forces are present, describe the motion of
the first n (uncontrolled) coordinates q1, . . . , qn and of the surrounding fluid.
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Kinetic energy of the body: T body(q, q̇) =

N∑

i,j=1

Gij(q)q̇
iq̇j

Kinetic energy of the surrounding fluid: T fluid =

∫

IRd\Φq(Ω)

|v(x)|2

2
dx

v = v(x) the velocity of the fluid at the point x

Key fact: for an incompressible, non-viscous, irrotational fluid,
the velocity v is entirely determined by the finitely many parameters q, q̇.

Kinetic energy of the fluid: T fluid(q, q̇) =

N∑

i,j=1

G̃ij(q)q̇
iq̇j

The previous theory applies, with T = T body + T fluid
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Euler equations + incompressibility condition

vt + v · ∇v = −∇p

div v ≡ 0

Assume: motion in IR2, zero vorticity, zero circulation

Claim: velocity of the surrounding fluid is entirely determined by q, q̇

Given q, q̇, we seek the unique irrotational velocity field v = v(q,q̇) defined on
IR2 \Φq(Ω) such that

〈
v(Φq(ξ)) , n

q(ξ)
〉

=

〈
N∑

i=1

∂

∂qi
Φq(ξ) · q̇i , n

q(ξ)

〉

q
ϕ (Ω)

n
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For i ∈ {1, . . . , N}, γi = ∇ψi, solve the Neumann problem in the exterior domain

∆ψi = 0 x ∈ IR2 \Φq(Ω)

n · ∇ψi = n ·
∂Φq

∂qi
x ∈ ∂Φq(Ω)

with ψi(x) → 0 as |x| → ∞

v(x) =

N∑

i=1

γ
(q)
i (x) · q̇i

∫

IR2\Φq(Ω)

|v(x)|2

2
dx =

N∑

i,j=1

G̃ij(q)q̇
iq̇j

• Computation of the coefficients G̃ij(q) may be hard !

Approximate expansion: C.Grotta Ragazzo, SIAM J. Appl. Math., 2003.

25



Symmetries

distance between leaves is constant ⇐⇒ fit for jumps

Theorem (A.Arsie, 2008). Assume: there exists a symmetry group G whose
orbits are the leaves Λu, and which preserves the metric gij.

Then the system is fit for jumps

~

G

ΛΛu u
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Geometry of swim-like motion

Take G = group of translations and rigid rotations

Variable splitting: q = (q1, . . . , qn, qn+1, . . . , qm)

• If the controlled variables qn+1, . . . , qn+m entirely determine the shape of the
body and the distribution of masses, up to a translation and a rigid rotation,
then the system [body + surrounding fluid] is fit for jumps

• In general, if the controlled variables qn+1, . . . , qn+m do not entirely determine
the shape of the body, then the system [body + surrounding fluid] is not fit for
jumps

- in the presence of freely flapping fins

- two or more swimmers
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Snake-like chain immersed in a perfect fluid

α β

Angles α, β are assigned as functions of time

• System is fit for jumps

• Completely controllable
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Additional non-holonomic constraints

(A.B. - F.Rampazzo - K.Han, 2010)

q = (q1, . . . , qn, qn+1, . . . , qn+m)

active constraints: qn+α = uα(t), α = 1, . . . ,m

additional non-holonomic constraints:

n+m∑

i=1

ωki(q) q̇
i = 0 k = 1, . . . , ν

2u

u1
x

1

x2

z Σ

• equations of motion

• geometric structure ⇐⇒ fit for jumps
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M a Riemann manifold with metric corresponding to the kinetic energy

T (q, q̇) =
∑

ij

gij(q) q̇
iq̇j

Γ = non-integrable distribution describing the non-holonomic constraint

Definition. A Γ-geodesic is a solution to

d

dt

∂T

∂q̇
−
∂T

∂q
∈ Γker q̇ ∈ Γ

i.e., a trajectory of the system with constraints, without external forces
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∆ = integrable distribution tangent to the foliation

Γ = non-integrable distribution describing the non-holonomic constraint

γ

Λ u

Λu~
∆

γ

Λ

Λ u

u~∆
Γ

Theorem (A.B. - F.Rampazzo, 2010)

The system is fit for jumps if and only if

the orthogonal bundle (∆ ∩ Γ)⊥ is Γ-geodesically invariant
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