Controlling Mechanical Systems by Active Constraints

Alberto Bressan

Department of Mathematics, Penn State University

Control of Mechanical Systems: Two approaches

- by applying external forces
- by directly assigning some of the coordinates, as functions of time

Riding on a Swing

1. An external force pushing:

$$
\ddot{\theta}=-\sin \theta+u(t)
$$

$t \mapsto u(t)$ is the force, used to control the motion of the swing
2. Changing the position of the barycenter:
$r=$ radius of oscillation $\quad \theta=$ angle
Assign the radius directly as function of time $r=u(t)$

$$
\ddot{\theta}=-\frac{\sin \theta}{u}-\frac{2 \dot{\theta}}{u} \dot{u} .
$$

Skier on a narrow trail

$s=$ arc length parameter along trail
$h=$ height of barycenter, along perpendicular line

Assign the height $h=u(t)$ as a function of time
\Longrightarrow the motion $t \mapsto s(t)$ along the trail is uniquely determined

Pendulum with fixed length and oscillating pivot

For $0<\theta<\frac{\pi}{2}$ the pendulum can be stabilized by vertical oscillations of the pivot
For $\frac{\pi}{2}<\theta<\pi$ the pendulum can be stabilized by horizontal oscillations

Swim-like motion in a perfect fluid

Consider:

- a deformable body whose shape and internal mass distribution are described by finitely many parameters
- immersed in a perfect fluid: incompressible, inviscid, irrotational

Assign some of these parameters as functions of time
\Longrightarrow determine the motion

Example (Kozlov \& al., 2000-2003)

A point mass moving inside a rigid shell, immersed in a perfect fluid.

Assign the relative position of the point mass: $P=u(t) \in \mathbb{R}^{2}$

Controlling a Lagrangian system by applying external forces

Lagrangian variables: q^{1}, \ldots, q^{N}

$$
\text { Kinetic energy: } \mathcal{T}(q, \dot{q})=\frac{1}{2} \sum_{i, j=1}^{N} g_{i j}(q) \dot{q}^{i} \dot{q}^{j}
$$

Equations of motion:

$$
\frac{d}{d t} \frac{\partial \mathcal{T}}{\partial \dot{q}^{i}}-\frac{\partial \mathcal{T}}{\partial q^{i}}=\phi_{i}(q, u(t)) \quad i=1, \ldots, N
$$

$t \mapsto u(t)=$ control function
$\phi_{i}(q, u)=$ components of the external forces

Controlling a Lagrangian system by assigning some of the coordinates as functions of time

Split the coordinates in two groups:

$$
q^{1}, \ldots, q^{n}, \quad q^{n+1}, \ldots, q^{n+m}
$$

Assign the last m coordinates directly as functions of time

$$
\begin{equation*}
q^{n+\alpha}=u_{\alpha}(t) \quad \alpha=1, \ldots, m \tag{C}
\end{equation*}
$$

Find the evolution of the first n coordinates q^{1}, \ldots, q^{n}

Splitting of coordinates determines a foliation: $\mathcal{F}=\left\{\Lambda_{u} ; u \in \mathbb{R}^{m}\right\}$
Each leaf is a submanifold: $\wedge_{u}=\left\{\left(q^{1}, \ldots, q^{n}, q^{n+1}, \ldots, q^{n+m}\right) ; q^{n+\alpha}=u_{\alpha}\right\}$

At each time t, the assignment

$$
\begin{equation*}
q^{n+\alpha}=u_{\alpha}(t) \quad \alpha=1, \ldots, m \tag{C}
\end{equation*}
$$

determines on which leaf the system is located

BASIC ASSUMPTION: the identities (C) are implemented by means of

FRICTIONLESS CONSTRAINTS

the force Φ used to implement the constraints is always perpendicular to the leaves Λ_{u} (w.r.t. the metric given by the kinetic energy)

Main literature:

Aldo Bressan, Hyper-impulsive motions and controllizable coordinates for Lagrangean systems Atti Accad. Naz. Lincei, Memorie, 8-19 (1990), 197-246.
C. Marle, Géométrie des systèmes mécaniques à liaisons actives, in Symplectic Geometry and Mathematical Physics, 260-287, P. Donato, C. Duval, J. Elhadad, and G. M. Tuynman Eds., Birkhäuser, Boston, 1991.

Mechanical applications:

Aldo Bressan, On some control problems concerning the ski or swing, Atti Accad. Naz. Lincei, Memorie, 9-1 (1991), 147-196.

Geometric structure:

F. Rampazzo, On the Riemannian structure of a Lagrangian system and the problem of adding time-dependent coordinates as controls. European J. Mechanics A/Solids 10 (1991), 405-431.
F. Cardin and M. Favretti, Hyper-impulsive motion on manifolds. Dynam. Contin. Discr. Impuls. Syst. 4 (1998), 1-21.

Analytical study of the impulsive O.D.E's:

A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls, Boll. Un. Matem. Italiana 2-B, (1988), 641-656.
A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields, J. Optim. Theory \& Appl. 71 (1991), 67-84.
A. Bressan and F. Rampazzo, On systems with quadratic impulses and their application to Lagrangean mechanics, SIAM J. Control Optim. 31 (1993), 1205-1220.

Controllability properties

J. Baillieul, The Geometry of Controlled Mechanical Systems, in Mathematical Control Theory, J.Baillieul \& J.C. Willems, Eds., Springer-Verlag, New York, 1998, 322-354.
A. Bressan and F. Rampazzo, Stabilization of Lagrangian systems by moving coordinates, Arch. Rational Mech. Anal. 196 (2010), 97-141.
A. Bressan and Z. Wang, On the controllability of Lagrangian systems by active constraints, J. Differential Equations, 247 (2009), 543-563.

Equations of motion (without additional forces)

$$
\text { Hamiltonian: } \quad H(q, p)=\frac{1}{2} \sum_{i, j=1}^{n+m} g^{i j}(q) p_{i} p_{j}
$$

$$
\begin{aligned}
& \text { conjugate momenta: } p_{i}=\frac{\partial T}{\partial \dot{q}^{i}}=\sum_{j=1}^{n+m} g_{i j}(q) \dot{q}^{j}, \quad\left(g^{i j}\right)=\left(g_{i j}\right)^{-1} \\
& \left\{\begin{array}{l}
\dot{q}^{i}=\frac{\partial H}{\partial p_{i}} \\
\dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{q}^{n+\alpha}=1, \ldots, n \\
\dot{p}_{n+\alpha}=\frac{\partial H}{\partial p_{n+\alpha}}
\end{array}\right. \\
& \qquad \begin{array}{l}
\frac{\partial H}{\partial q^{n+\alpha}}+\Phi_{\alpha}(t)
\end{array}
\end{aligned}
$$

For $\alpha=1, \ldots, m$, the components of the forces $\Phi_{\alpha}(t)$ produced by the constraints must be determined so that $q^{n+\alpha}(t)=u_{\alpha}(t)$

$$
\begin{aligned}
& \text { variables: } \begin{array}{cc}
q^{1} \ldots q^{n} \\
p_{1} \ldots p_{n}
\end{array} \\
& \left\{\begin{array}{l}
q^{n+1} \ldots q^{n+m} \\
p_{n+1} \ldots p_{n+m}
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{q}^{i}= \\
\dot{p}_{i}= \\
\hline-\frac{\partial H}{\partial p_{i}}(q, p) \\
\partial q^{i}
\end{array}(q, p)\right.
\end{aligned}
$$

Solve for $q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}$, inserting the values

$$
\left\{\begin{array}{ll}
q^{n+\alpha}=u_{\alpha}(t) & \dot{q}^{n+\alpha}=\dot{u}_{\alpha}(t) \\
p_{n+\alpha}=p_{n+\alpha}\left(p_{1}, \ldots, p_{n}, \dot{q}^{n+1}, \ldots, \dot{q}^{n+m}\right)
\end{array} \quad \alpha=1, \ldots, m\right.
$$

Analytic form of the equations

Kinetic energy matrix: $\quad G=\left(\begin{array}{cc}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right)=\left(\begin{array}{cc}\left(g_{i j}\right) & \left(g_{i, n+\beta}\right) \\ \left(g_{n+\alpha, j}\right) & \left(g_{n+\alpha, n+\beta}\right)\end{array}\right)$

$$
A=\left(a^{i j}\right) \doteq\left(G_{11}\right)^{-1}, \quad K=\left(k_{\alpha}^{i}\right) \doteq-A G_{12}, \quad B=\left(b_{\alpha, \beta}\right) \doteq G_{22}-G_{21} A G_{12}
$$

Equations of motion for the free variables $q=\left(q^{1}, \ldots, q^{n}\right), \quad p=\left(p_{1}, \ldots, p_{n}\right)$

$$
\begin{gathered}
\qquad\binom{\dot{q}}{\dot{p}}=\binom{A p}{-\frac{1}{2} p^{\dagger} \frac{\partial A}{\partial q} p+F}+\binom{K}{-p \frac{\partial K}{\partial q}} \dot{u}+\dot{u}^{\dagger}\binom{0}{\frac{1}{2} \frac{\partial B}{\partial q}} \dot{u}, \\
u=\left(u_{1}, \ldots, u_{m}\right)=\text { control function } \quad F=\text { additional forces }
\end{gathered}
$$

No need to explicitly compute the forces Φ_{α} produced by the constraints !

Classification

$$
\binom{\dot{q}}{\dot{p}}=\binom{A p}{-\frac{1}{2} p^{\dagger} \frac{\partial A}{\partial q} p}+\binom{K}{-p \frac{\partial K}{\partial q}} \dot{u}+\dot{u}^{\dagger}\binom{0}{\frac{1}{2} \frac{\partial B}{\partial q}} \dot{u},
$$

1. General form: quadratic w.r.t. \dot{u}

Possible input functions:

$$
u(\cdot) \in W^{1,2}=\left\{\text { absolutely continuous functions with } \dot{u} \in \mathbf{L}^{2}\right\}
$$

2. Fit for jumps: affine w.r.t. \dot{u}, if $\partial B / \partial q \equiv 0$

Possible input functions:

$$
u(\cdot) \in B V=\{\text { functions with bounded variation }\}
$$

(assigning the path taken by the control across each jump)
3. Strongly fit for jumps: $\dot{x}=f(x, u)$ (with a suitable choice of coordinates)

Relevant Problems

1. Understand the relations between

- analytic form of the equation
- geometric properties of the foliation
- topologies that render continuous the "control-to-trajectory" map $u(\cdot) \mapsto q(\cdot)$

2. Representation of the dynamics in terms of a differential inclusion. Approximation with smooth controls.
3. Stabilization at a point \bar{q}, or around a periodic orbit.
4. Optimization problems

Equivalent properties

- The hyper-impulsive system is fit for jumps, namely $\partial B / \partial q \equiv 0$ and the equations are affine w.r.t. \dot{u}.
- The foliation $\left\{\Lambda_{u} ; u \in \mathbb{R}^{m}\right\}$ is bundle like, i.e. leaves remain at constant distance from each other (B. Reinhart, Ann. Math. 1959).
- Any geodesic γ that starts perpendicularly to one of the leaves, remains perpendicular to every other leaf it meets.

not fit for jumps

Controlling a general system (not fit for jumps)

Interplay between linear and quadratic terms:

$$
\begin{equation*}
\binom{\dot{q}}{\dot{p}}=\binom{A p}{-\frac{1}{2} p^{\dagger} \frac{\partial A}{\partial q} p+F}+\binom{K}{-p \frac{\partial K}{\partial q}} \dot{u}+\dot{u}^{\dagger}\binom{0}{\frac{1}{2} \frac{\partial B}{\partial q}} \dot{u} \tag{1}
\end{equation*}
$$

Reduced dynamics (neglecting linear terms):

$$
\begin{equation*}
\binom{\dot{q}}{\dot{p}} \in\binom{A p}{-\frac{1}{2} p^{\dagger} \frac{\partial A}{\partial q} p+F}+\mathcal{V}, \quad \mathcal{V} \doteq \overline{c o}\left\{w^{\dagger}\binom{0}{\frac{\partial B}{\partial q}} w ; \quad w \in \mathbb{R}^{m}\right\} \tag{2}
\end{equation*}
$$

$\mathcal{V}=$ cone of impulses generated by control vibrations

Theorem (A.B. - F. Rampazzo). Every trajectory of (2) can be uniformly approximated by trajectories of (1)

A first order reduction (slow dynamics: $p \approx 0$)

$$
\begin{gather*}
\binom{\dot{q}}{\dot{p}}=\binom{A p}{-\frac{1}{2} p^{\dagger} \frac{\partial A}{\partial q} p}+\binom{K}{-p^{\dagger} \frac{\partial K}{\partial q}} \dot{u}+\dot{u}^{\dagger}\binom{0}{\frac{1}{2} \frac{\partial B}{\partial q}} \dot{u} \tag{1}\\
\dot{q} \in K(q, u) \dot{u}+\Gamma(q, u), \quad(q, u)(0)=(\bar{q}, \bar{u}) \tag{2}\\
\Gamma(q, u) \doteq \overline{c o}\left\{A(q, u)\left(w^{\dagger} \frac{\partial B}{\partial q}(q, u) w\right) ; \quad w \in \mathbb{R}^{m}\right\}=A \mathcal{V}
\end{gather*}
$$

Theorem (A.B. - Z.Wang, 2008). Let $t \mapsto\left(q^{*}(t), u^{*}(t)\right) \in \mathbb{R}^{n+m}$ be a trajectory of the differential inclusion (2), defined for $t \in[0,1]$.
For every $\varepsilon>0$, there exists a smooth control $u(\cdot)$ defined on some interval [$0, T$] such that then the corresponding solution of (1) with initial data

$$
(q, u)(0)=\left(q^{*}(0), u^{*}(0)\right), \quad p(0)=0
$$

satisfies

$$
\sup _{t \in[0, T]}|p(t)|<\varepsilon, \quad \sup _{t \in[0, T]}\left|q(t)-q^{*}(\psi(t))\right|<\varepsilon, \quad \sup _{t \in[0, T]}\left|u(t)-u^{*}(\psi(t))\right|<\varepsilon,
$$

for some increasing diffeomorphism $\psi:[0, T] \mapsto[0,1]$

Example: bead sliding without friction along a rotating bar

$$
\begin{array}{cc}
q(t)=r=\text { radius } & u(t)=\theta=\text { controlled angle } \\
T(r, \theta, \dot{r}, \dot{\theta})=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) & p=\frac{\partial T}{\partial \dot{r}}=m \dot{r}
\end{array} \quad\left\{\begin{array}{l}
\dot{r}=p / m \\
\dot{p}=m r \dot{u}^{2}
\end{array} .\right.
$$

Every solution $t \mapsto\left(r^{*}(t), \theta^{*}(t)\right)$ of the differential inclusion $\dot{r}^{*}(t) \geq 0$ can be traced by a solution of the original system, starting at rest.

Locomotion in a Perfect Fluid

$q=\left(q^{1}, \ldots, q^{N}\right)=$ Lagrangian parameters, describing the position, mass distribution and shape of the body
$\xi \mapsto \Phi^{q}(\xi)$ is a volume preserving diffeomorphism
$\Omega=$ reference configuration. $\quad \Phi^{q(t)}(\Omega)=$ region occupied by the body at time t.

For $n+m=N$, we assign the last m coordinates as functions of time, by means of frictionless constraints

$$
q^{n+\alpha}=u_{\alpha}(t) \quad \alpha=1, \ldots, m
$$

PROBLEM: Assuming that no other forces are present, describe the motion of the first n (uncontrolled) coordinates q^{1}, \ldots, q^{n} and of the surrounding fluid.

$$
\text { Kinetic energy of the body: } \quad \mathcal{T}^{\text {body }}(q, \dot{q})=\sum_{i, j=1}^{N} G_{i j}(q) \dot{q}^{i} \dot{q}^{j}
$$

$$
\text { Kinetic energy of the surrounding fluid: } \quad \mathcal{T}^{\text {fluid }}=\int_{\mathbb{R}^{d} \backslash \Phi^{q}(\Omega)} \frac{|v(x)|^{2}}{2} d x
$$

$v=v(x)$ the velocity of the fluid at the point x
Key fact: for an incompressible, non-viscous, irrotational fluid, the velocity v is entirely determined by the finitely many parameters q, \dot{q}.

$$
\text { Kinetic energy of the fluid: } \quad \mathcal{T}^{\text {fluid }}(q, \dot{q})=\sum_{i, j=1}^{N} \widetilde{G}_{i j}(q) \dot{q}^{i} \dot{q}^{j}
$$

The previous theory applies, with $\mathcal{T}=\mathcal{T}^{\text {body }}+\mathcal{T}^{\text {fluid }}$

Euler equations + incompressibility condition

$$
\begin{gathered}
v_{t}+v \cdot \nabla v=-\nabla p \\
\operatorname{div} v \equiv 0
\end{gathered}
$$

Assume: motion in \mathbb{R}^{2}, zero vorticity, zero circulation
Claim: velocity of the surrounding fluid is entirely determined by q, \dot{q}
Given q, \dot{q}, we seek the unique irrotational velocity field $v=v^{(q, \dot{q})}$ defined on $\mathbb{R}^{2} \backslash \Phi^{q}(\Omega)$ such that

$$
\begin{aligned}
\left\langle v\left(\Phi^{q}(\xi)\right), \quad \mathbf{n}^{q}(\xi)\right\rangle & =\left\langle\sum_{i=1}^{N} \frac{\partial}{\partial q^{i}} \Phi^{q}(\xi) \cdot \dot{q}^{i}, \quad \mathbf{n}^{q}(\xi)\right\rangle \\
\varphi^{q}(\Omega) & \vdots
\end{aligned}
$$

For $i \in\{1, \ldots, N\}, \gamma_{i}=\nabla \psi_{i}$, solve the Neumann problem in the exterior domain

$$
\begin{array}{rlrl}
\Delta \psi_{i} & =0 & x \in \mathbb{R}^{2} \backslash \Phi^{q}(\Omega) \\
\mathbf{n} \cdot \nabla \psi_{i} & =\mathbf{n} \cdot \frac{\partial \Phi^{q}}{\partial q^{i}} & x \in \partial \Phi^{q}(\Omega)
\end{array}
$$

with $\psi_{i}(x) \rightarrow 0$ as $|x| \rightarrow \infty$

$$
\begin{gathered}
v(x)=\sum_{i=1}^{N} \gamma_{i}^{(q)}(x) \cdot \dot{q}^{i} \\
\int_{\mathbb{R}^{2} \backslash \Phi^{q}(\Omega)} \frac{|v(x)|^{2}}{2} d x=\sum_{i, j=1}^{N} \widetilde{G}_{i j}(q) \dot{q}^{i} \dot{q}^{j}
\end{gathered}
$$

- Computation of the coefficients $\widetilde{G}_{i j}(q)$ may be hard !

Approximate expansion: C.Grotta Ragazzo, SIAM J. Appl. Math., 2003.

Symmetries

distance between leaves is constant
$\Longleftrightarrow \quad$ fit for jumps

Theorem (A.Arsie, 2008). Assume: there exists a symmetry group \mathcal{G} whose orbits are the leaves Λ_{u}, and which preserves the metric $g_{i j}$.

Then the system is fit for jumps

Geometry of swim-like motion

Take $\mathcal{G}=$ group of translations and rigid rotations

Variable splitting: $q=\left(q^{1}, \ldots, q^{n}, q^{n+1}, \ldots, q^{m}\right)$

- If the controlled variables q^{n+1}, \ldots, q^{n+m} entirely determine the shape of the body and the distribution of masses, up to a translation and a rigid rotation, then the system [body + surrounding fluid] is fit for jumps
- In general, if the controlled variables q^{n+1}, \ldots, q^{n+m} do not entirely determine the shape of the body, then the system [body + surrounding fluid] is not fit for jumps
- in the presence of freely flapping fins
- two or more swimmers

Snake-like chain immersed in a perfect fluid

Angles α, β are assigned as functions of time

- System is fit for jumps
- Completely controllable

Additional non-holonomic constraints

$$
\begin{gathered}
\text { (A.B. - F.Rampazzo - K.Han, 2010) } \\
\qquad=\left(q^{1}, \ldots, q^{n}, q^{n+1}, \ldots, q^{n+m}\right)
\end{gathered}
$$

active constraints: $\quad q^{n+\alpha}=u_{\alpha}(t), \quad \alpha=1, \ldots, m$
additional non-holonomic constraints: $\sum_{i=1}^{n+m} \omega_{k i}(q) \dot{q}^{i}=0 \quad k=1, \ldots, \nu$

- equations of motion
- geometric structure \Longleftrightarrow fit for jumps
\mathcal{M} a Riemann manifold with metric corresponding to the kinetic energy

$$
\mathcal{T}(q, \dot{q})=\sum_{i j} g_{i j}(q) \dot{q}^{i} \dot{q}^{j}
$$

$\Gamma=$ non-integrable distribution describing the non-holonomic constraint

Definition. A Γ-geodesic is a solution to

$$
\frac{d}{d t} \frac{\partial \mathcal{T}}{\partial \dot{q}}-\frac{\partial \mathcal{T}}{\partial q} \in \Gamma^{k e r} \quad \dot{q} \in \Gamma
$$

i.e., a trajectory of the system with constraints, without external forces
$\Delta=$ integrable distribution tangent to the foliation
$\Gamma=$ non-integrable distribution describing the non-holonomic constraint

Theorem (A.B. - F.Rampazzo, 2010)
The system is fit for jumps if and only if
the orthogonal bundle $(\Delta \cap \Gamma)^{\perp}$ is Γ-geodesically invariant

