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Control of Mechanical Systems: Two approaches

e by applying external forces

e by directly assigning some of the coordinates, as functions of time



Riding on a Swing

1. An external force pushing:
6 = —sinf 4+ u(t)

t — u(t) is the force, used to control the motion of the swing

2. Changing the position of the barycenter:

r = radius of oscillation 6 = angle

Assign the radius directly as function of time r = u(t)
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Skier on a narrow trail

HE

s = arc length parameter along trail

h=— height of barycenter, along perpendicular line

Assign the height h = u(¢) as a function of time

— the motion t — s(t) along the trail is uniquely determined



Pendulum with fixed length and oscillating pivot

For0 <6 < g the pendulum can be stabilized by vertical oscillations of the pivot

For g < 0 < m the pendulum can be stabilized by horizontal oscillations



Swim-like motion in a perfect fluid

Consider:

e a deformable body whose shape and internal mass distribution are described
by finitely many parameters

e immersed in a perfect fluid: incompressible, inviscid, irrotational

Assign some of these parameters as functions of time

— determine the motion
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Example (Kozlov & al., 2000 - 2003)

A point mass moving inside a rigid shell, immersed in a perfect fluid.

Assign the relative position of the point mass: P = u(t) € IR?




Controlling a Lagrangian system by applying external forces

Lagrangian variables: ¢, ... ¢V

L | 1 N
Kinetic energy: T(g,4) = 7 > gii(@)d'd’
i,j=1
Equations of motion:
d oOT 0T
T = $i(q,ult ' =1.....N
B od  oq ¢i(q, u(t)) g

t — u(t) = control function

»;(g,u) = components of the external forces



Controlling a Lagrangian system by assigning
some of the coordinates as functions of time

Split the coordinates in two groups:

ql’”.’qn’ qn—l-l’.”’qn—l—m

Assign the last m coordinates directly as functions of time

q”+o‘=ua(t) a=1,...,m (C)

Find the evolution of the first n coordinates ¢%,...,¢"

Splitting of coordinates determines a foliation: F = {A\,; u € R™}

Each leaf is a submanifold: A, = {(ql,...,q”,q”+1,...,q”+m); gt = ua}



At each time t, the assignment
¢t = un(t) a=1,...,m (C)

determines on which leaf the system is located

BASIC ASSUMPTION: the identities (C) are implemented by means of

FRICTIONLESS CONSTRAINTS

the force ® used to implement the constraints is always
perpendicular to the leaves A, (w.r.t. the metric given by the kinetic energy)

()
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Equations of motion (without additional forces)

n+m
1 g
Hamiltonian:  H(q,p) = 3 > ¢”()pips
i,j=1
. oT e - j ij -1
conjugate momenta: p;, = g = Z 9i(q)¢’, (97) = (gi5)
j=1
S ; |
T = o
1=1,....n
- OH
pi = — ¢
‘n+oa  — OH
q T 8pn+a
a=1, , 1M
pn—|—a - - 3(:)]£a + cboa(t)
Fora=1,...,m, the components of the forces ®,(t) produced by the constraints

must be determined so that ¢"1T2(t) = ua(t)
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q1 e gt q""‘1 q""'m
pP1L ... DPn Pn+1 -+ Pndm

variables:

{ q' 5o (a,p)

. _ OH 1 =1 n
pi = —5:(ap) s
Solve for ¢t,...,q", pi,...,pn, inserting the values
qn+a = uqa(t) qn+a = ua(t)
a=1,
pn-l-a — pn—l—a(plp e 7pn7 q'n+l’ sy qn—l—m)
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Analytic form of the equations

Kinetic energy matrix: G = ( Gu G2 ) — ( (9i5) (9in+5) )

Go1 G2 (In+aj) (Gnta,n+p)
A= (a")=(Gu)™',  K=(k,)=-AG12,  B=(bap) = G2 —G21AG
Equations of motion for the free variables ¢ = (¢,...,q¢"), p= (p1,...,pn)
q Ap K o)
~ 1, +0A T 0K @+ 108 u,
p —§pT3—qp + F —P3q 29q
u = (u1,...,un) = control function F = additional forces

No need to explicitly compute the forces &, produced by the constraints !

15



Classification

q Ap K o)
- 1 _+9A OK i+ af 10B it
p —§pT3—qP _pa_q 29q

1. General form: quadratic w.r.t. «

Possible input functions:

u(-) € Wt2 = {absolutely continuous functions with @ € L2}

2. Fit for jumps: affine w.r.t. «, if 0B/0q =0

Possible input functions:

u(-) € BV = {functions with bounded variation}

(assigning the path taken by the control across each jump)

3. Strongly fit for jumps: z = f(xz,u) (with a suitable choice of coordinates)
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Relevant Problems

1. Understand the relations between
e analytic form of the equation
e geometric properties of the foliation

e topologies that render continuous the “control-to-trajectory” map u(-) — q(-)

2. Representation of the dynamics in terms of a differential inclusion.
Approximation with smooth controls.

3. Stabilization at a point g, or around a periodic orbit.

4. Optimization problems
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Equivalent properties

e The hyper-impulsive system is fit for jumps, namely dB/0q = 0 and the
equations are affine w.r.t. «.

e The foliation {A,; wu € IR™} is bundle like, i.e. leaves remain at constant
distance from each other (B. Reinhart, Ann. Math. 1959).

e Any geodesic v that starts perpendicularly to one of the leaves, remains per-
pendicular to every other leaf it meets.

fit for jJumps not fit for jumps
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Controlling a general system (not fit for jumps)

Interplay between linear and quadratic terms:

q Ap K o)
- dA T OK @+ 198 u, (1)
p —§pT 5.0+ F —P3q 29q
Reduced dynamics (neglecting linear terms):
q Ap 0
c +V, Y =col w w; weR™
p —5p'%p+ F &

(2)

VYV = cone of impulses generated by control vibrations

Theorem (A.B. - F. Rampazzo). Every trajectory of (2) can be uniformly
approximated by trajectories of (1)
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Q

A first order reduction (slow dynamics: p =~ 0)

q Ap K 0
- 1. +0A T oK u T ! 1B u (1)
p —§PTa—qP —pTa—q 29q
q € K(qg,u)u+T(q,u), (q,u)(0) = (q,u) (2)

9B

8q(q,u)w); wE]Rm} = AV

Mg, u) = E{A(q,u) (w

Theorem (A.B. - Z.Wang, 2008). Let t — (q¢*(t),u*(t)) € IR*™™ be a trajectory
of the differential inclusion (2), defined for ¢ € [0, 1].

For every € > 0, there exists a smooth control u(-) defined on some interval [0, T]
such that then the corresponding solution of (1) with initial data

(g,u)(0) = (¢*(0),u"(0)), p(0) =0

satisfies
sup [p(t)] <e, sup |q(t) — ¢ " ((1))| <, sup |u(t) —u(¥(t))| <e,
te[0,7T7] te[0,7T7] te[0,T7]

for some increasing diffeomorphism ) : [0,T] — [O, 1]
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Example: bead sliding without friction along a rotating bar

q(t) = r = radius u(t) = 0 = controlled angle
A\ — Moo 242 _8_T_ - r = p/m,
T(r,0,7,6) = (2 4 r26%) =20 = i {r 2o

Every solution ¢t — (r*(t),0*(t)) of the differential inclusion 7*(¢t) >0

can be traced by a solution of the original system, starting at rest.

(r.0)

-
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Locomotion in a Perfect Fluid

qg=(q¢%,...,¢") = Lagrangian parameters, describing the position,
mass distribution and shape of the body

£ — PI(E) is a volume preserving diffeomorphism

Q = reference configuration. ®2"(Q) = region occupied by the body at time ¢.

For n+m = N, we assign the last m coordinates as functions of time, by means
of frictionless constraints

¢" T = un(t) a=1,....m

PROBLEM: Assuming that no other forces are present, describe the motion of
the first n (uncontrolled) coordinates ¢%,...,¢" and of the surrounding fluid.
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N
Kinetic energy of the body: 7TP°%(q,¢4) = Z Gii(Q)d'¢
i j=1

[v(2)|?
2

dx

Kinetic energy of the surrounding fluid: 7744 = /
R\DI(R)

v = v(x) the velocity of the fluid at the point x

Key fact: for an incompressible, non-viscous, irrotational fluid,
the velocity v is entirely determined by the finitely many parameters q,q.

N
Kinetic energy of the fluid: 7™ (q, ) = Z Gii(Q)q'¢
i j=1

The previous theory applies, with 7 = 7Pody 4 g fluid
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Euler equations 4+ incompressibility condition
ve+v-Vo=—-Vp
divv =0

Assume: motion in IR?, zero vorticity, zero circulation
Claim: velocity of the surrounding fluid is entirely determined by gq, g

Given ¢,q, we seek the unique irrotational velocity field v = v(@%9 defined on
IR? \ ®9(2) such that

N

(v(®"(€)) , ni(®)) = <Z O 1) - nq<s>>

1=1

dq"
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Forie {1,...,N}, vi = V4, solve the Neumann problem in the exterior domain

A =0 z € IR*\ P(2)

oLk
n~V¢¢=n-8. x € 0PI(NQ)
q’L

with ¢;(x) — 0 as || = o

N .
v(@) = Y AP) ¢
1=1

/ @, = ﬁ: Gij()d'q’
R\®(Q) 2 ’

1,7=1

e Computation of the coefficients Gi;(q) may be hard !

Approximate expansion: C.Grotta Ragazzo, SIAM J. Appl. Math., 2003.
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Svymmetries

distance between leaves is constant <= fit for jumps

Theorem (A.Arsie, 2008). Assume: there exists a symmetry group G whose
orbits are the leaves A,, and which preserves the metric g;;.

Then the system is fit for jumps
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Geometry of swim-like motion

Take G = group of translations and rigid rotations

Variable splitting: ¢ = (¢, ...,q", ¢"T1,...,¢™)

e If the controlled variables ¢"T1, ..., ¢"t™ entirely determine the shape of the
body and the distribution of masses, up to a translation and a rigid rotation,
then the system [body + surrounding fluid] is fit for jumps

e In general, if the controlled variables ¢"t1, ... ¢"T™ do not entirely determine
the shape of the body, then the system [body + surrounding fluid] is not fit for
jumps

- in the presence of freely flapping fins

- two or more swimmers
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Snake-like chain immersed in a perfect fluid

a B

Angles «, 8 are assigned as functions of time

e System is fit for jumps

e Completely controllable
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Additional non-holonomic constraints

(A.B. - F.Rampazzo - K.Han, 2010)

q=1(q" .., ¢" " ...,¢"T™)
active constraints: g T = u(t), a=1,....,m
n+m
additional non-holonomic constraints: Z wri(q) ¢ =0 Ek=1,...,v
1=1

e equations of motion

e geometric structure <= fit for jumps



M a Riemann manifold with metric corresponding to the kinetic energy

T(g,d) = > gi(0)d'¢

[T = non-integrable distribution describing the non-holonomic constraint
Definition. A [-geodesic is a solution to

doT 0T
— €

el I—k:er e
dt Oqg  Oq 1

i.e., a trajectory of the system with constraints, without external forces
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A = integrable distribution tangent to the foliation

[T = non-integrable distribution describing the non-holonomic constraint

Theorem (A.B. - F.Rampazzo, 2010)
The system is fit for jumps if and only if

the orthogonal bundle (A NT)+ is M-geodesically invariant
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