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A brief review of some recent work

ρt + [ρ v(ρ)]x = 0 (LWR)

conservation law on each road + junction conditions

examples of ill-posedness for some models based on Riemann Solvers

well-posedness in L∞ for junction models including buffers

existence results for global optima and Nash equilibria on a network of roads
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Modeling traffic flow at a junction

incoming roads: i ∈ I outgoing roads: j ∈ O

i

j

Boundary conditions account for:

θij = fraction of drivers from road i that turn into road j

ci = relative priority of drivers from road i
(fraction of time drivers from road i get green light, on average)∑

j

θij = 1
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Boundary conditions for several incoming and outgoing roads
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Construction of a Riemann Solver (Coclite, Garavello, Piccoli . . .)

{
ρ1, . . . , ρN = initial densities (constant on each road)
θij = fraction of drivers from road i that turn into road j


f max
i = maximum flux on the incoming road i ∈ I

f max
j = maximum flux on the outgoing road j ∈ O

Feasible region Ω ⊂ Rn. Vector of incoming fluxes (f1, . . . , fn) ∈ Ω iff

fi ∈ [0, f max
i ] i ∈ I∑

i fiθij ≤ f max
j j ∈ O

max

max
max

max

f

f

f

f
3

4

1

2

Alberto Bressan (Penn State) Traffic flow on Networks 5 / 25



The feasible region Ω
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Riemann solver ⇐⇒ rule for selecting a point in the feasible region Ω

Example: maximize the total flux through the node:
∑
i∈I

fi
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Continuity of the Riemann Solver

Selection rule: maximize the total flux
∑

i∈I fi

If the turning preferences θij remain constant, the fluxes fi depend Lipschitz
continuously on the Riemann data ρ1, . . . , ρN .
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The Riemann solver is discontinuous w.r.t. changes in the θij
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Why should the θij vary in time?

Drivers’ turning preferences θij must be determined as part of the solution

A
1

2

3

4

5

B

# of vehicles on road i that wish to turn into road j is conserved:

(ρθij)t + (ρvi (ρ)θij)x = 0
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Continuous Riemann Solvers (A.B. - F.Yu, Discr. Cont. Dyn. Syst., 2015)

f
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The selection rule: maximize
∏

i∈I fi yields a Riemann solver
which is Hölder continuous w.r.t. all variables

(ρi , θij)i∈I, j∈O 7→ (fi )i∈I

One can also construct a Riemann solver which is Lipschitz continuous
w.r.t. all variables

Unfortunately all this is useless, because if the θij are allowed to vary
the Cauchy problem is ill posed anyway
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Ill-posedness of the Cauchy problem at intersections

Modeling assumptions

If all cars arriving at the intersection can immediately move to
outgoing roads, no queue is formed.

If outgoing roads are congested, the inflow of cars from road 1 is
twice as large as the inflow from road 2.

3

1

2

4
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Example 1: θij with unbounded variation, two solutions

f

x

2x

f
1

2

4
f

3
f

fk(ρ) = 2ρ− ρ2 maximum flux on every road: f max
k = 1

Initial data: ρk = 1, k = 1, 2, 3, 4

θ̂13(x) = θ̂24(x) =

 1 if − 2−n < x < −2−n−1, n even

0 if − 2−n < x < −2−n−1, n odd
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Solution 1. Incoming fluxes: f1(t, 0) = 1, f2(t, 0) = 1

Solution 2. Incoming fluxes: f1(t, 0) =
2

3
, f2(t, 0) =

1

3
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Example 2: θij constant, Tot.Var .(ρi ) small, two solutions

k
ρ(2−ρ)f (  ) = ρ

cars from roads 6, 7  go to road 4

cars from roads 5, 8  go to road 3
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(x) = ρ (x)

ρ (x)
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ρ

ρ

At some time T > 0, the same initial data as in Example 1 is created

at the junction of roads 1 and 2
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Example 3: lack of continuity w.r.t. weak convergence
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As n→∞, the weak limit is θ12 = θ13 = 1
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An intersection model with buffers

3

2

1

4

5q
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q
4

the intersection contains a buffer with finite capacity (a traffic circle)

t 7→ qj(t) = queues in front of outgoing roads j ∈ O , within the
buffer

incoming drivers are admitted to the intersection at a rate depending
on the size of these queues

drivers already inside the intersection flow out to the road of their
choice at the fastest possible rate
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M. Herty, J. P. Lebacque, and S. Moutari, A novel model for intersections of
vehicular traffic flow. Netw. Heterog. Media 2009.

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer. Discrete
Contin. Dyn. Syst. 2012.

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in
Advances in Dynamic Network Modeling in Complex Transportation Systems,
2013.

Toward the analysis of global optima and Nash equilibria, we need

well posedness for L∞ initial data ρ0k , θ0ij
continuity of travel time w.r.t. weak convergence

ρk,t + fk(ρk)x = 0 conservation laws

θij ,t + vi (ρi )θij ,x = 0 linear transport equations
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Intersection models with buffers
(A.B., K.Nguyen, Netw. Heter. Media, 2015)

qj(t) = size of the queue, inside the intersection, of cars waiting to enter road j

(SBJ) - Single Buffer Junction

M > 0 = maximum number of cars that can occupy the intersection

ci > 0, i ∈ I, priorities given to different incoming roads

Incoming fluxes f̄i satisfy f̄i ≤ ci
(

M −
∑
j∈O

qj

)
, i ∈ I
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Well-posedness of the Cauchy problem with buffers

Theorem (A.B.- K.Nguyen, Netw. Heter. Media 10 (2015), 255-293).

Consider an intersection modeled by (SBJ).

For any L∞ initial data ρ(0, x) = ρ̄k(x) ∈ [0, ρjamk ],

qj(0) = q̄j , θij(0, x) = θ̄ij ∈ [0, 1] with
∑
j∈O

q̄j < M,
∑
j∈O

θ̄ij(x) = 1

the Cauchy problem has a unique entropy admissible solution,
defined for all t ≥ 0.

Moreover, the travel times depend continuously on the initial data, in the
topology of weak convergence.

ρ̄nk(x) ⇀ ρ̄k ρ̄ni θ̄
n
ij ⇀ ρ̄i θ̄ij , q̄n

j → q̄j
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Variational formulation

kk
V (t,x) =   (t,x) dxρ
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Lax  formula
(V , V , V , V , V )

1
(q  , q  )

4
(q  , q  )

length of queues 

boundary  values

32 4 4 555

If the queue sizes qj(t) within the buffer are known, then the initial-boundary value
problems can be independently solved along each incoming road.

These solutions can be computed by solving suitable variational problems.
From the value functions Vk , the traffic density ρk = Vk,x along each incoming or
outgoing road is recovered by a Lax type formula.
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Lax  formula
(V , V , V , V , V )

1
(q  , q  )

4

=

traffic  densities

(q  , q  )

length of queues 

boundary  values

V
k

ρ
k,x

32 4 4 555

Conversely, if these value functions Vk are known, then the queue sizes qj can be
determined by balancing the boundary fluxes of all incoming and outgoing roads

The solution of the Cauchy problem is obtained as the unique fixed point of a
contractive transformation

The present model accounts for backward propagation of queues along roads
leading to a crowded intersection, it achieves well-posedness for general L∞ data,
and continuity of travel time w.r.t. weak convergence
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The limit Riemann Solver for buffer of vanishing size

Theorem (A.B., A.Nordli, Netw. Heter. Media, to appear).

Letting the size of the buffer M → 0 one obtains a Riemann Solver which is
Lipschitz continuous w.r.t. all variables ρi , θij
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f

s 7→ γ(s) = (f1(s), . . . , fm(s)), fi (s)
.

= min{ci s , f max
i }

Then the incoming fluxes are f̄i = fi (s̄)

where: s̄ = max

{
s ≥ 0 ;

∑
i∈I

fi (s) θij ≤ f max
j for all j ∈ O

}
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Optimization Problems for Traffic Flow on a Network

n groups of drivers with different origins and destinations, and different costs

Drivers in the k-th group depart from Ad(k) and arrive to Aa(k)

can use different paths Γ1, Γ2, . . . to reach destination

Departure cost: ϕk(t) arrival cost: ψk(t)

A

A

d(k)

a(k)
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Basic assumptions

(A1) The flux functions ρ 7→ fi (ρ) = ρ v(ρ) are all strictly concave down.

fi (0) = fi (ρ
jam
i ) = 0 , f ′′

i < 0 .

(A2) For each group of drivers k = 1, . . . ,N, the cost functions ϕk , ψk satisfy

ϕ′
k < 0, ψk , ψ

′
k < 0, lim

|t|→∞

(
ϕk(t) + ψk(t)

)
= + ∞

ρ

ϕ(t) (t)ψ

f(ρ)

0

f
max

tmax
ρ ρ

jam

Alberto Bressan (Penn State) Traffic flow on Networks 23 / 25



Optima and Equilibria

An admissible family {ūk,p} of departure rates is globally optimal if it
minimizes the sum of the total costs of all drivers

J(ū)
.

=
∑
k,p

∫ (
ϕk(t) + ψk(τp(t))

)
ūk,p(t) dt

An admissible family {ūk,p} of departure rates is a Nash equilibrium if no
driver of any group can lower his own total cost by changing departure
time or switching to a different path to reach destination.

ϕk(t) + ψk(τp(t)) = Ck for all t ∈ Supp(ūk,p)

ϕk(t) + ψk(τp(t)) ≥ Ck for all t ∈ R
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Existence results

Theorem (A.B.- K.Nguyen, Netw. Heter. Media 10 (2015), 717–748).

Under the assumptions (A1)-(A2), on a general network of roads, there exists at
least one globally optimal solution.

If, in addition, the travel time admits a uniform upper bound, then a Nash
equilibrium exists.

Proof is achieved by finite dimensional approximations
+ a topological argument (relying on the continuity of the travel time w.r.t. weak
convergence of the departure rates)

For a single group of drivers on a single road, solutions are unique.

Uniqueness is not expected to hold, on a general network.

An earlier existence result was proved in
A.B. - Ke Han, Netw. Heter. Media, 2013,
with simplified boundary conditions at road intersections.

Necessary conditions for global optimality?
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