Traffic models on a network of roads

Alberto Bressan

Department of Mathematics, Penn State University
bressan@math.psu.edu

A brief review of some recent work

$$
\begin{equation*}
\rho_{t}+[\rho v(\rho)]_{x}=0 \tag{LWR}
\end{equation*}
$$

conservation law on each road + junction conditions

- examples of ill-posedness for some models based on Riemann Solvers
- well-posedness in \mathbf{L}^{∞} for junction models including buffers
- existence results for global optima and Nash equilibria on a network of roads

Modeling traffic flow at a junction

incoming roads: $i \in \mathcal{I} \quad$ outgoing roads: $j \in \mathcal{O}$

Boundary conditions account for:

- $\theta_{i j}=$ fraction of drivers from road i that turn into road j
- $c_{i}=$ relative priority of drivers from road i (fraction of time drivers from road i get green light, on average)

$$
\sum_{j} \theta_{i j}=1
$$

Boundary conditions for several incoming and outgoing roads

- H.Holden, N.H.Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal. 26, 1995.
- G.M.Coclite, M.Garavello, B.Piccoli, Traffic flow on a road network, SIAM J. Math. Anal. 36, 2005.
- M.Herty, S.Moutari, M.Rascle, Optimization criteria for modeling intersections of vehicular traffic flow, Netw. Heterog. Media 1, 2006.
- M.Garavello, B.Piccoli, Conservation laws on complex networks, Ann.I.H.Poincaré 262009.
- M.Garavello, B.Piccoli, Traffic Flow on Networks, AIMS, 2006.
- A.B., S.Canic, M.Garavello, M.Herty, and B.Piccoli, Flow on networks: recent results and perspectives, EMS Surv. Math. Sci. 1 (2014), 47-111.

Construction of a Riemann Solver

$$
\left\{\begin{array}{l}
\rho_{1}, \ldots, \rho_{N}=\text { initial densities (constant on each road) } \\
\theta_{i j}=\text { fraction of drivers from road } i \text { that turn into road } j
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
f_{i}^{\max }=\text { maximum flux on the incoming road } i \in \mathcal{I} \\
f_{j}^{\max }=\text { maximum flux on the outgoing road } j \in \mathcal{O}
\end{array}\right.
$$

Feasible region $\Omega \subset \mathbb{R}^{n}$. Vector of incoming fluxes $\left(f_{1}, \ldots, f_{n}\right) \in \Omega$ iff

- $f_{i} \in\left[0, f_{i}^{\text {max }}\right] \quad i \in \mathcal{I}$
- $\sum_{i} f_{i} \theta_{i j} \leq f_{j}^{\max } \quad j \in \mathcal{O}$

The feasible region Ω

Riemann solver \Longleftrightarrow rule for selecting a point in the feasible region Ω

Example: maximize the total flux through the node: $\sum_{i \in \mathcal{I}} f_{i}$

Continuity of the Riemann Solver

Selection rule: maximize the total flux $\sum_{i \in \mathcal{I}} f_{i}$

- If the turning preferences $\theta_{i j}$ remain constant, the fluxes f_{i} depend Lipschitz continuously on the Riemann data $\rho_{1}, \ldots, \rho_{N}$.

- The Riemann solver is discontinuous w.r.t. changes in the $\theta_{i j}$

Why should the $\theta_{i j}$ vary in time?

Drivers' turning preferences $\theta_{i j}$ must be determined as part of the solution

\# of vehicles on road i that wish to turn into road j is conserved:

$$
\left(\rho \theta_{i j}\right)_{t}+\left(\rho v_{i}(\rho) \theta_{i j}\right)_{x}=0
$$

Continuous Riemann Solvers (A.B. - F.Yu, Discr. Cont. Dyn. Syst, 2015)

- The selection rule: maximize $\prod_{i \in \mathcal{I}} f_{i}$ yields a Riemann solver which is Hölder continuous w.r.t. all variables

$$
\left(\rho_{i}, \theta_{i j}\right)_{i \in \mathcal{I}, j \in \mathcal{O}} \mapsto\left(f_{i}\right)_{i \in \mathcal{I}}
$$

- One can also construct a Riemann solver which is Lipschitz continuous w.r.t. all variables
- Unfortunately all this is useless, because if the $\theta_{i j}$ are allowed to vary the Cauchy problem is ill posed anyway

III-posedness of the Cauchy problem at intersections

Modeling assumptions

- If all cars arriving at the intersection can immediately move to outgoing roads, no queue is formed.
- If outgoing roads are congested, the inflow of cars from road 1 is twice as large as the inflow from road 2.

Example 1: $\theta_{i j}$ with unbounded variation, two solutions

$$
f_{k}(\rho)=2 \rho-\rho^{2} \quad \text { maximum flux on every road: } \quad f_{k}^{\max }=1
$$

Initial data: $\quad \rho_{k}=1, \quad k=1,2,3,4$

$$
\hat{\theta}_{13}(x)=\hat{\theta}_{24}(x)=\left\{\begin{array}{lll}
1 & \text { if }-2^{-n}<x<-2^{-n-1}, & n \text { even } \\
0 & \text { if }-2^{-n}<x<-2^{-n-1}, & n \text { odd }
\end{array}\right.
$$

Solution 1. Incoming fluxes: $f_{1}(t, 0)=1, \quad f_{2}(t, 0)=1$

Solution 2. Incoming fluxes: $f_{1}(t, 0)=\frac{2}{3}, \quad f_{2}(t, 0)=\frac{1}{3}$

Example 2: $\theta_{i j}$ constant, Tot. Var. $\left(\rho_{i}\right)$ small, two solutions

At some time $T>0$, the same initial data as in Example 1 is created at the junction of roads 1 and 2

Example 3: lack of continuity w.r.t. weak convergence

As $n \rightarrow \infty$, the weak limit is $\theta_{12}=\theta_{13}=\frac{1}{2}$

An intersection model with buffers

- the intersection contains a buffer with finite capacity (a traffic circle)
- $t \mapsto q_{j}(t)=$ queues in front of outgoing roads $j \in \mathcal{O}$, within the buffer
- incoming drivers are admitted to the intersection at a rate depending on the size of these queues
- drivers already inside the intersection flow out to the road of their choice at the fastest possible rate
- M. Herty, J. P. Lebacque, and S. Moutari, A novel model for intersections of vehicular traffic flow. Netw. Heterog. Media 2009.
- M. Garavello and P. Goatin, The Cauchy problem at a node with buffer. Discrete Contin. Dyn. Syst. 2012.
- M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in Advances in Dynamic Network Modeling in Complex Transportation Systems, 2013.

Toward the analysis of global optima and Nash equilibria, we need

- well posedness for \mathbf{L}^{∞} initial data $\rho_{k}^{0}, \theta_{i j}^{0}$
- continuity of travel time w.r.t. weak convergence

$$
\left\{\begin{array}{rll}
\rho_{k, t}+f_{k}\left(\rho_{k}\right)_{x} & =0 & \\
\text { conservation laws } \\
\theta_{i j, t}+v_{i}\left(\rho_{i}\right) \theta_{i j, x} & =0 & \\
\text { linear transport equations }
\end{array}\right.
$$

Intersection models with buffers (A.B., K.Nguyen, Netw. Heter. Media, 2015)

$q_{j}(t)=$ size of the queue, inside the intersection, of cars waiting to enter road j

(SBJ) - Single Buffer Junction

$M>0=$ maximum number of cars that can occupy the intersection
$c_{i}>0, i \in \mathcal{I}$, priorities given to different incoming roads
Incoming fluxes \bar{f}_{i} satisfy $\quad \bar{f}_{i} \leq c_{i}\left(M-\sum_{j \in \mathcal{O}} q_{j}\right), \quad i \in \mathcal{I}$

Well-posedness of the Cauchy problem with buffers

Theorem (A.B.- K.Nguyen, Netw. Heter. Media 10 (2015), 255-293).
Consider an intersection modeled by (SBJ).
For any \mathbf{L}^{∞} initial data $\quad \rho(0, x)=\bar{\rho}_{k}(x) \in\left[0, \rho_{k}^{j a m}\right]$,
$q_{j}(0)=\bar{q}_{j}, \quad \theta_{i j}(0, x)=\bar{\theta}_{i j} \in[0,1] \quad$ with $\sum_{j \in \mathcal{O}} \bar{q}_{j}<M, \quad \sum_{j \in \mathcal{O}} \bar{\theta}_{i j}(x)=1$
the Cauchy problem has a unique entropy admissible solution, defined for all $t \geq 0$.

Moreover, the travel times depend continuously on the initial data, in the topology of weak convergence.

$$
\bar{\rho}_{k}^{n}(x) \rightharpoonup \bar{\rho}_{k} \quad \bar{\rho}_{i}^{n} \bar{\theta}_{i j}^{n} \rightharpoonup \bar{\rho}_{i} \bar{\theta}_{i j}, \quad \bar{q}_{j}^{n} \rightarrow \bar{q}_{j}
$$

Variational formulation

$$
\left(\mathrm{q}_{4}, \mathrm{q}_{5}\right) \xrightarrow{\text { Lax formula }}\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right) \xrightarrow{\text { boundary values }}\left(\mathrm{q}_{4}, \mathrm{q}_{5}\right)
$$

length of queues

$$
\mathrm{V}_{\mathrm{k}}(\mathrm{t}, \mathrm{x})=\int_{\mathrm{k}}^{\mathrm{x}} \rho_{\mathrm{k}}(\mathrm{t}, \mathrm{x}) \mathrm{dx}
$$

- If the queue sizes $q_{j}(t)$ within the buffer are known, then the initial-boundary value problems can be independently solved along each incoming road.
These solutions can be computed by solving suitable variational problems.
From the value functions V_{k}, the traffic density $\rho_{k}=V_{k, x}$ along each incoming or outgoing road is recovered by a Lax type formula.

$$
\left(\mathrm{q}_{4}, \mathrm{q}_{5}\right) \xrightarrow{\text { Lax formula }}\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right) \xrightarrow{\text { boundary values }}\left(\mathrm{q}_{4}, \mathrm{q}_{5}\right)
$$

length of queues

$$
\rho_{\mathrm{k}}=\mathrm{V}_{\mathrm{k}, \mathrm{x}}
$$

traffic densities

- Conversely, if these value functions V_{k} are known, then the queue sizes q_{j} can be determined by balancing the boundary fluxes of all incoming and outgoing roads
- The solution of the Cauchy problem is obtained as the unique fixed point of a contractive transformation
- The present model accounts for backward propagation of queues along roads leading to a crowded intersection, it achieves well-posedness for general \mathbf{L}^{∞} data, and continuity of travel time w.r.t. weak convergence

The limit Riemann Solver for buffer of vanishing size

Theorem (A.B., A.Nordli, Netw. Heter. Media, to appear).
Letting the size of the buffer $M \rightarrow 0$ one obtains a Riemann Solver which is Lipschitz continuous w.r.t. all variables $\rho_{i}, \theta_{i j}$

$$
s \mapsto \gamma(s)=\left(f_{1}(s), \ldots, f_{m}(s)\right),
$$

$$
f_{i}(s) \doteq \min \left\{c_{i} s, f_{i}^{\max }\right\}
$$

Then the incoming fluxes are $\bar{f}_{i}=f_{i}(\bar{s})$
where: $\bar{s}=\max \left\{s \geq 0 ; \quad \sum_{i \in \mathcal{I}} f_{i}(s) \theta_{i j} \leq f_{j}^{\max }\right.$ for all $\left.j \in \mathcal{O}\right\}$

Optimization Problems for Traffic Flow on a Network

n groups of drivers with different origins and destinations, and different costs
Drivers in the k-th group depart from $A_{d(k)}$ and arrive to $A_{a(k)}$ can use different paths $\Gamma_{1}, \Gamma_{2}, \ldots$ to reach destination

Departure cost: $\varphi_{k}(t)$ arrival cost: $\psi_{k}(t)$

Basic assumptions

(A1) The flux functions $\rho \mapsto f_{i}(\rho)=\rho v(\rho)$ are all strictly concave down.

$$
f_{i}(0)=f_{i}\left(\rho_{i}^{j a m}\right)=0, \quad f_{i}^{\prime \prime}<0 .
$$

(A2) For each group of drivers $k=1, \ldots, N$, the cost functions φ_{k}, ψ_{k} satisfy

$$
\varphi_{k}^{\prime}<0, \quad \psi_{k}, \psi_{k}^{\prime}<0, \quad \lim _{|t| \rightarrow \infty}\left(\varphi_{k}(t)+\psi_{k}(t)\right)=+\infty
$$

Optima and Equilibria

An admissible family $\left\{\bar{u}_{k, p}\right\}$ of departure rates is globally optimal if it minimizes the sum of the total costs of all drivers

$$
J(\bar{u}) \doteq \sum_{k, p} \int\left(\varphi_{k}(t)+\psi_{k}\left(\tau_{p}(t)\right)\right) \bar{u}_{k, p}(t) d t
$$

An admissible family $\left\{\bar{u}_{k, p}\right\}$ of departure rates is a Nash equilibrium if no driver of any group can lower his own total cost by changing departure time or switching to a different path to reach destination.

$$
\begin{array}{ll}
\varphi_{k}(t)+\psi_{k}\left(\tau_{p}(t)\right)=C_{k} & \text { for all } t \in \operatorname{Supp}\left(\bar{u}_{k, p}\right) \\
\varphi_{k}(t)+\psi_{k}\left(\tau_{p}(t)\right) \geq C_{k} & \text { for all } t \in \mathbb{R}
\end{array}
$$

Existence results

Theorem (A.B.- K.Nguyen, Netw. Heter. Media 10 (2015), 717-748).
Under the assumptions (A1)-(A2), on a general network of roads, there exists at least one globally optimal solution.

If, in addition, the travel time admits a uniform upper bound, then a Nash equilibrium exists.

- Proof is achieved by finite dimensional approximations + a topological argument (relying on the continuity of the travel time w.r.t. weak convergence of the departure rates)
- For a single group of drivers on a single road, solutions are unique. Uniqueness is not expected to hold, on a general network.
- An earlier existence result was proved in
A.B. - Ke Han, Netw. Heter. Media, 2013, with simplified boundary conditions at road intersections.
- Necessary conditions for global optimality?

