• Log In
 Visit the Pennsylvania State University Home Page

Center for Interdisciplinary Mathematics

Department of Mathematics

  • Home
  • People
    • Faculty in the Mathematics Department
    • Faculty from other Departments
    • Postdocs
    • Current Graduate Students
    • Previous Students
    • External Collaborators
    • Visitors
  • Research Theme
    • Traffic Flow
    • Optimization
    • Biology
    • Shape Growth
  • Research Experiences
  • Publications
    • Traffic Flow
    • Optimal Control, Game Theory, and Applications
    • Collective motion and Self-organization in living world
    • Superconducting and Superfluidity
    • Models of Controlled Biological Growth
  • Events
    • Workshops
    • Upcoming Talks
    • Previous lectures
    • Talks

On Collective motion and self-organization in living world

  1. B. M. Haines, I. S. Aranson, L. Berlyand, and D. A. Karpeev, Effective Viscosity of Dilute Bacterial Suspensions: A Two-Dimensional Model, Physical Biology, 5(4), pp. 046003 (2008).
  2. V. Gyrya, I. Aranson, L. Berlyand, and D. Karpeev, A model of hydrodynamic interaction between swimming bacteria, Bulletin of Mathematical Biology, 72, pp. 148-183 (2010).
  3. B. Haines, A. Sokolov, I. Aranson, and L. Berlyand, A three-dimensional model for the effective viscosity of bacterial suspensions, Physical Review E, 80, pp.041922 (2009).
  4. V. Gyrya, K. Lipnikov, I. Aranson, and L. Berlyand, Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations, J. Math. Biology , 62(5), pp. 707-740 (2011).
  5. S.D. Ryan, B.M. Haines, L. Berlyand, F. Ziebert, and I.S. Aranson, Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise, Rapid Communication to Phys. Rev. E, 83 050904(R) (2011)
  6. B. Haines, I. Aranson, L. Berlyand, and D. Karpeev, Effective viscosity of bacterial suspensions: A three-dimensional PDE model with stochastic torque, Comm. Pure Appl. Anal., 11(1), pp. 19-46 (2012).
  7. M. Potomkin, V. Gyrya, I. Aranson, and L. Berlyand, Collision of microswimmers in viscous fluid, Physical Review E 87 053005 (2013)
  8. S. Ryan, L. Berlyand, B. Haines, and D. Karpeev, A kinetic model for semi-dilute bacterial suspensions, SIAM MMS 11(4), pp. 1176-1196 (2013).
  9. S. Gluzman, D. Karpeev, and L. Berlyand, Effective viscosity of puller-like microswimmers: a renormalization approach, Journal of the Royal Society Interface, 10(89) (2013).
  10. S.D. Ryan, A. Sokolov, L. Berlyand, and I.S. Aranson, Collective dynamics in semidilute bacterial suspensions, New Journal of Physics 15 105021 (2013).
  11. M. Tournus, A. Kirshtein, L. Berlyand, and I. Aranson, Flexibility of bacterial flagella in external shear results in complex swimming trajectories, Journal of the Royal Society Interface 12(102) (2014).
  12. L. Berlyand, M.S. Mizuhara, V. Rybalko, and L. Zhang, On an evolution equation in a cell motility model, Physica D, 318-319, pp. 12-25 (2015).
  13. L. Berlyand, V. Rybalko, and M. Potomkin, Sharp interface limit in a phase field model of cell motility, accepted to NHM (2017).
  14. L. Berlyand, M. Potomkin, and V. Rybalko, Phase-Field Model of Cell Motility: Traveling Waves and Sharp Interface Limit, Comptes Rendus Mathematique, 354(10), pp. 986-992 (2016).
  15. M. Potomkin, L. Berlyand, and S. D. Ryan, Effective rheological properties in semidilute bacterial suspensions, Bulletin of Mathematical Biology, 78(3), pp. 580-615 (2016).
  16. M. Potomkin, M. Tournus, L. Berlyand, and I. Aranson, Flagella bending affects macroscopic properties of bacterial suspensions, Journal of the Royal Society Interface, 14(130), 20161031 (2017).
  17. I. Aranson, L. Berlyand, and M. Mizuhara, Minimal Model of Directed Cell Motility on Patterned Substrates, submitted, (2017).
  18.  L.Berlyand, J. Fuhrmann, and V. Rybalko,   Bifurcation of traveling waves in a Keller-Segel type free boundary model of cell motility, Communications in Mathematical Sciences, 16/3, 735-962 (2018).
  19.  L.Berlyand, I. Aranson, A. Kaiser, and M. Potomkin,   Focusing of Active Particles in a Converging Flow, New Journal of Physics, Vol. 19, p. 115005 (2017).
  20. L.Berlyand, I. Aranson, and M. Mizuhara,  Minimal Model of Directed Cell Motility on Patterned Substrates, Physical Review E, 96(5) p. 052408 (2017).
  • Home
  • People
    • Faculty in the Mathematics Department
    • Faculty from other Departments
    • Postdocs
    • Current Graduate Students
    • Previous Students
    • External Collaborators
    • Visitors
  • Research Themes
    • Traffic Flow
    • Optimization
    • Biology
    • Shape Growth
  • Research Experiences
  • Publications
    • Traffic Flow
    • Optimal Control, Game Theory, and Applications
    • Collective motion and Self-organization in living world
    • Superconducting and Superfluidity
    • Models of Controlled Biological Growth
  • Events
    • Workshops
    • Upcoming Talks
    • Previous lectures
    • Talks
  • Notes
  • Courses
  • Contact
 Visit the Pennsylvania State University Home Page
Copyright 2026 © The Pennsylvania State University Privacy Non-Discrimination Equal Opportunity Accessibility Legal